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Abstract

This paper studies the identification and estimation of the first-price auction

model with risk averse bidders within the private value paradigm. We show that the

benchmark model is nonidentified in general from observed bids. We then consider

various extensions including a binding reserve price, affiliation among private values

and asymmetric bidders. In particular, we exploit heterogeneity across auctioned

objects to establish semiparametric identification under a conditional quantile re-

striction and a parameterization of the bidders’ utility function. Next we propose

a semiparametric method for estimating the corresponding auction model. This

method involves several steps and allows to recover the parameter(s) of the utility

function as well as the bidders’ private value distribution. We show that our semi-

parametric estimator of the utility function parameter(s) converges at the optimal

rate, which is slower than the parametric one. The method is illustrated on U.S.

Forest Service timber sales and a test of bidders’ risk neutrality is performed.

Key words: Risk Aversion, Private Value, Nonparametric Identification, Semipara-

metric Estimation, Optimal Rate, Timber Auctions.

JEL classification: C14, D44, L70



Semiparametric Estimation of First-Price Auctions

with Risk Averse Bidders

S. Campo, E. Guerre, I. Perrigne, and Q. Vuong

1 Introduction

Since the seminal unpublished work by Kenneth Arrow and its formalization by Pratt

(1964), risk aversion has become a fundamental concept in economics whenever agents

face various types of uncertainties such as in auctions. For instance, Goere, Holt and

Palfrey (2002) maninly explain the deviations from the risk neutral Nash equilibrium

by bidders’ risk aversion, while Bajari and Hortacsu (2005) show that the risk aversion

model provides the best fit to experimental bids over several competing models. On the

other hand, many important results in auction theory crucially depend on risk neutrality

such as the revenue equivalence theorem established by Vickrey (1961).1 Despite its

importance in auction modeling, very few empirical studies have assessed the extent of

bidders’ risk aversion on field data. Using US Forest Service auctions, Baldwin (1995)

and Athey and Levin (2001) show that bidding diversification across species is consistent

with bidders’ risk aversion. The structural approach, which assumes that observed bids

are the Bayesian Nash equilibrium outcomes, is well adapted to assess and test bidders’

risk aversion.2 Our paper adopts such an approach and focuses on the identification and

estimation under nonparametric assumptions in the spirit of Laffont and Vuong (1996)

and Guerre, Perrigne and Vuong (2000).

1The optimal auction mechanism under bidders’ risk aversion requires complex transfers. See Maskin

and Riley (1984) and Matthews (1987).
2See Paarsch (1992) and Laffont, Ossard and Vuong (1995) for early developments and Perrigne and

Vuong (1999) and Athey and Haile (2006) for recent surveys.
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Throughout, we consider first-price sealed-bid auctions with risk averse bidders within

the private value paradigm. Under bidders’ risk aversion, Maskin and Riley (1984) show

that a first-price auction generates a larger revenue than an ascending auction, thereby

providing a rationale for the use of the former mechanism. A first part of our paper

briefly presents the benchmark model with independent private values (IPV) and reviews

the existence, uniqueness and smoothness of the Bayesian Nash equilibrium strategy. In

particular, existence and uniqueness follow from Maskin and Riley (2000b, 2003) among

others. A second part is devoted to the identification of the benchmark model, i.e. whether

its structural elements can be uniquely recovered from observed bids. The structural ele-

ments are the bidders’ von Neuman Morgenstern (vNM) utility function and the bidders’

private value distribution. First, we show that this model is nonidentified from observed

bids even when the utility function is restricted to belong to well known families of risk

aversion such as constant relative risk aversion (CRRA). Second, we show that any bid

distribution can be rationalized by a CRRA model, a constant absolute risk aversion

(CARA) model, and a fortiori a model with general risk aversion. Such a striking result

implies that the game theoretical model does not impose testable restrictions on bids.

Third, since little is known on the utility function, an alternative identifying strategy is

to parameterize the private value distribution, while leaving the utility function nonpara-

metric. Again, we show that this model is not identified from observed bids.

In view of the preceding results, a third part of our paper seeks weak and palatable

restrictions that can lead to identification. Specifically, we exploit heterogeneity across

auctioned objects through a parametric quantile restriction of the private value distrib-

ution conditional upon object characteristics. We also restrict the bidders’ vNM utility

function to be parametric. Under these identifying conditions, we show that the utility

function parameter(s) and the conditional private value distribution are semiparamet-

rically identified. As a matter of fact, we show that dropping either one of these two

conditions looses identification. In this sense, our semiparametric modeling is natural,

while providing a new direction for the structural analysis of auction data. A fourth part

of the paper provides an upper bound for the convergence rate, which can be attained by

estimators of the utility function parameter(s). Specifically, we study the best (optimal)

rate that an estimator of the risk aversion parameter(s) can achieve relying on the mini-

max theory developed by e.g. Ibragimov and Has’minskii (1981). Because estimation of a
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distribution upper boundary can be achieved at a faster rate than for any other quantile,

we focus on a parametric restriction of the upper boundary. When auctioned objects’

heterogeneity is characterized by d continuous variables and the underlying density is R

continuously differentiable, we show that the optimal rate for estimating the risk aversion

parameter(s) is N (R+1)/(2R+3), which is independent of d though slower than
√
N .

A fifth part of the paper develops a multistep semiparametric estimation procedure.

A first step consists in estimating nonparametrically the conditional bid density at its

upper boundary. A second step uses (possibly weighted) nonlinear least squares (NLLS)

with the nonparametric estimates obtained in the first step to estimate the utility func-

tion parameter(s). A third step allows us to recover the bidders’ private values and

their underlying conditional density following Guerre, Perrigne and Vuong (2000). We

show that our estimator of the utility function parameter(s) attains the optimal rate

N (R+1)/(2R+3) . This contrasts with most
√
N -consistent semiparametric estimators devel-

oped in the econometric literature as surveyed recently by Newey and McFadden (1994)

and Powell (1994).3 A notable feature of our estimation problem is that the variance of

the error term in the nonlinear regression model diverges with N , thereby leading to a

non standard convergence rate for our semiparametric estimator.

A sixth part of our paper studies extensions of the benchmark model. We show that

our identification results extend to the case of a binding reserve price, affiliated private

values and asymmetric auctions when asymmetry arises from different private value dis-

tributions. In contrast, asymmetry arising from different utility functions provides addi-

tional restrictions that can be used to identify the model. Our estimation method can be

readily adapted to the three first cases, while the estimation of the fourth case is briefly

discussed. One advantage of our method is its computational simplicity as it circumvents

both the numerical determination and inversion of the equilibrium bidding strategy. This

is especially convenient when there is no closed form solution to the differential equation

defining the equilibrium strategy such as for general risk aversion and asymmetric bidders.

We then illustrate our procedure on the US Forest Service timber auctions. In particular,

a test of bidders’ risk neutrality is performed and bidders are found to be risk averse.

The paper is organized as follows. Section 2 briefly presents the benchmark model

3Notable exceptions of semiparametric estimators converging at a slower rate than
√

N are those

proposed by Manski (1985), Horowitz (1992), Kyriazidou (1997) and Honoré and Kyriazidou (2000).
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and the properties of the Bayesian Nash equilibrium strategy. Section 3 provides general

nonidentification results of this model. Understanding of such results leads to additional

identifying restrictions in Section 4. Section 5 provides an upper bound for the optimal

convergence rate that can be attained by a semiparametric estimators of the utility func-

tion parameter(s). Section 6 presents our semiparametric estimation procedure with its

various steps and statistical properties. Section 7 considers extensions of the benchmark

model and discusses their identification and estimation. Section 8 is devoted to an illus-

tration of our method to timber auction data. Section 9 concludes. Three appendices

collect the proofs of our theoretical results.

2 The Benchmark Model

This section presents the IPV first-price sealed-bid auction model with risk averse bidders

and properties of its equilibrium strategy. A single and indivisible object is sold through

a first-price sealed-bid auction. Within the IPV paradigm, each bidder knows his own

private value vi for the auctioned object but not other bidders’ private values. The private

values are drawn independently from a distribution F (·), which is absolutely continuous

with density f(·) on a support [v, v] ⊂ IR+. The distribution F (·) and the number of

potential bidders I ≥ 2 are assumed to be common knowledge. Let U(·) be the bidders’

vNM utility function with U(0) = 0, U ′(·) > 0 and U ′′(·) ≤ 0 because of potential risk

aversion. All bidders are thus identical ex ante and the game is said to be symmetric.

Bidder i then maximizes his expected utility

EΠi = U(vi − bi)Pr(bi ≥ bj, j 6= i) (1)

with respect to his bid bi, where bj is the jth player’s bid. This corresponds to the

most studied case in the auction literature where the quality of the auctioned item is

known and has equivalent monetary value. See Case 1 in Maskin and Riley (1984) and

Krishna (2002).4 In addition, because the scale is irrelevant, we impose the normalization

U(1) = 1. The risk neutral case is obtained when U(·) is the identity function.5

4Maskin and Riley (1984) consider a more general model where the utility of winning is of the form

u(−bi, vi) and the utility of loosing is equal to w(·). Here, u(−bi, vi) = U(vi − bi) and w(0) = U(0) = 0.
5Bidders’ wealth w can be readily introduced in the model. In this case, the expected profit becomes

[U(w + vi − bi) − U(w)]Pr(bi ≥ bj , j 6= i) + U(w). On the other hand, allowing different wealths wi
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From Maskin and Riley (1984), if a symmetric Bayesian Nash equilibrium strategy

s(·, U, F, I) exists, then it is strictly increasing, continuous and differentiable.6 Thus (1)

becomes EΠi = U(vi − bi)F
I−1(s−1(bi)), where s−1(·) denotes the inverse of s(·). Hence,

imposing bidder i’s optimal bid bi to be s(vi) gives the following differential equation

s′(vi) = (I − 1)
f(vi)

F (vi)
λ(vi − bi) (2)

for all vi ∈ [v, v], where λ(·) = U(·)/U ′(·). As shown by Maskin and Riley (1984), the

boundary condition is U(v − s(v)) = 0, i.e. s(v) = v because U(0) = 0. Moreover, the

second-order conditions are satisfied.

When the reserve price is nonbinding, existence of a pure equilibrium strategy follows

from Maskin and Riley (2000b) and Athey (2001), while its uniqueness has been estab-

lished by Maskin and Riley (2003) using an argument similar to Lebrun (1999). The main

contribution of Theorem 1 is to derive the smoothness of the equilibrium strategy, which

is used in the next sections. We assume that U(·) and F (·) belong to UR and FR defined

as follows, respectively.

Definition 1: For R ≥ 1, let UR be the set of utility functions U(·) satisfying

(i) U : [0,+∞) → [0,+∞), U(0) = 0 and U(1) = 1,

(ii) U(·) is continuous on [0,+∞), and admits R + 2 continuous derivatives on (0,+∞)

with U ′(·) > 0 and U ′′(·) ≤ 0 on (0,+∞),

(iii) limx↓0 λ
(r)(x) is finite for 1 ≤ r ≤ R + 1, where λ(r)(·) is the rth derivative of λ(·).

Conditions (i) and (ii) have been discussed previously. Note that limx↓0 λ(x) = 0 since

U(0) = 0 and U ′(·) is nonincreasing. Thus, from (ii) and (iii) it follows that λ(·) admits

R + 1 continuous derivatives on [0,+∞). These regularity assumptions are weak as they

are satisfied by many vNM utility functions.

Definition 2: For R ≥ 1, let FR be the set of distributions F (·) satisfying

(i) F (·) is a c.d.f. with support of the form [v, v], where 0 ≤ v < v < +∞,

leads to an asymmetric game if the wis are common knowledge and to a multisignal game if the wis are

private information. The first case is studied in Section 7, while the second case is beyond the scope of

this paper. For multisignals, see Che and Gale (1998) for a model with budget constraints.
6Moreover, as noted by Maskin and Riley (1984, Remark 2.3), the only equilibria are symmetric when

F (·) has bounded support, which is assumed below.
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(ii) F (·) admits R + 1 continuous derivatives on [v, v],

(iii) f(·) > 0 on [v, v].

These restrictions are weak with the exception of the finite upper bound v. Relaxing

(i) is possible but would involve more technicalities, while allowing possibly asymmetric

equilibria. Altogether (i)–(iii) imply that f(·) is bounded away from zero on [v, v].

Theorem 1: Let I ≥ 2 and R ≥ 1. Suppose that [U, F ] ∈ UR × FR, then there exists a

unique (symmetric) equilibrium and its equilibrium strategy s(·) satisfies:

(i) ∀v ∈ (v, v], s(v) < v, while s(v) = v,

(ii) ∀v ∈ [v, v], s′(v) > 0 with s′(v) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1,

(iii) s(·) admits R + 1 continuous derivatives on [v, v].

Theorem 1 is an immediate consequence of a more general theorem allowing for exogenous

variables in Guerre and Vuong (2006).

3 General Nonidentification Results

In this section we study identification of the structure [U, F ] from observables. We assume

that the number I of bidders is observed, as in a first-price sealed-bid auction with a

nonbinding reserve price. We also assume that the distribution G(·) of an equilibrium

bid is known. Knowledge of G(·) from observed bids is an estimation problem, which is

addressed in Section 6. Thus the identification problem reduces to whether the structure

[U, F ] can be recovered uniquely from the knowledge of (I, G). A related issue is whether

any bid distribution G(·) can be rationalized by a structure [U, F ] given I. Such a question

relates to the possibility of testing the validity of the auction model under consideration.

Following Guerre, Perrigne and Vuong (2000), we express (2) using the distribution

G(·) of an equilibrium bid. For every b ∈ [b, b] = [v, s(v)], we have G(b) = F (s−1(b)) =

F (v) with density g(b) = f(v)/s′(v), where v = s−1(b). Thus (2) can be written as

1 = (I − 1)
g(bi)

G(bi)
λ(vi − bi). (3)

Since U(·) ≥ 0 and U ′′(·) ≤ 0, we have λ′(·) = 1 − U(·)U ′′(·)/U ′2(·) ≥ 1. Thus λ(·) is
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strictly increasing. Solving (3) for vi gives

vi = bi + λ−1

(
1

I − 1

G(bi)

g(bi)

)
≡ ξ(bi, U,G, I), (4)

where λ−1(·) denotes the inverse of λ(·). This equation expresses each bidder’s private

value as a function of his corresponding bid, the bid distribution, the number of bidders

and the utility function. Note that ξ(·) is the inverse of the bidding strategy s(·).
The equilibrium bid distribution G(·) satisfies some regularity properties implied by

the smoothness of s(·) given in Theorem 1 and the regularity assumptions on [U, F ].

Definition 3: For R ≥ 1, let GR be the set of distributions G(·) satisfying

(i) G(·) is a c.d.f. with support of the form [b, b], where 0 ≤ b < b < +∞,

(ii) G(·) admits R + 1 continuous derivatives on [b, b],

(iii) g(·) > 0 on [b, b],

(iv) g(·) admits R + 1 continuous derivatives on (b, b],

(v) limb↓b d
r[G(b)/g(b)]/dbr exists and is finite for r = 1, . . . , R + 1.

The regularity properties (i)–(iii) are similar to those of Definition 2 for F (·). They

imply that g(·) is bounded away from zero on [b, b] and limb↓b G(b)/g(b) = 0 so that

limb↓b ξ(b, U,G, I) = b. Properties (iv) and (v) are specific to the auction model. In

particular, (iv) says that g(·) is smoother than f(·), extending a similar property noted

by Guerre, Perrigne and Vuong (2000) for the risk neutral model. Combined with (iii)

and (iv), (v) implies that G(·)/g(·) is R + 1 continuously differentiable on [b, b].

The following lemma provides necessary and sufficient conditions for rationalizing a

distribution of observed bids by an IPV auction model with risk aversion. Hereafter, we

say that a distribution is rationalized by an auction model with risk aversion if there exists

a structure [U, F ] whose equilibrium bid distribution is identical to the given distribution.

Lemma 1: Let I ≥ 2, R ≥ 1, and G(·) be the joint distribution of (b1, . . . , bI). There

exists an IPV auction model with risk aversion [U, F ] ∈ UR ×FR that rationalizes G(·) if

and only if

(i) G(b1, . . . , bI) =
∏I

i=1G(bi), with G(·) ∈ GR,

(ii) ∃λ : IR+ → IR+ with R+1 continuous derivatives on [0,+∞), λ(0) = 0 and λ′(·) ≥ 1

such that ξ′(·) > 0 on [b, b], where ξ(b, U,G, I) = b + λ−1 [G(b)/((I − 1)g(b))] .
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Condition (i) is related to the IPV paradigm and requires that bids be i.i.d., where G(·)
satisfies the regularity properties of Definition 3. Condition (ii) arises from ξ(·, U,G, I)
being the inverse of the equilibrium strategy, which is strictly increasing.7

The next proposition shows that any distribution G(·) ∈ GR can be rationalized by

an IPV auction model with a utility function displaying risk aversion. Specifically, for

F (·) ∈ FR, we consider CRRA structures [U, F ] with U(x) = x1−c for 0 ≤ c < 1, where

we have imposed U(0) = 0 and U(1) = 1. Similarly, CARA structures are of the form

[U, F ] with U(x) = (1 − exp(−ax))/(1 − exp(−a)) for a > 0.8

Proposition 1: Let I ≥ 2 and R ≥ 1. Any distribution G(·) ∈ GR can be rationalized by

a CRRA structure as well as a CARA structure with F (·) ∈ FR.

Proposition 1 is striking. First, it implies that the restriction (ii) in Lemma 1 for ratio-

nalizing a bid distribution with risk averse bidders is redundant. Specifically, our proof

indicates that we can always find a function λ(·) corresponding to either a CRRA or

CARA utility function so that (ii) is satisfied whenever G(·) ∈ GR. Alternatively, the IPV

auction model with general risk aversion does not impose any restriction on observed bids

beyond their independence and the weak regularity conditions embodied in GR. Second,

because a structure [U, F ] ∈ UR ×FR leads to a bid distribution G(·) ∈ GR by Lemma 1,

Proposition 1 implies that there always exist a CARA structure and a CRRA structure

that are observationally equivalent to [U, F ]. In other words, the game theoretic auction

model with arbitrary risk aversion does not provide enough restrictions on observed bids

to discriminate it from a CRRA or a CARA model.9 Third, because a risk neutral model

is a special risk averse model, Proposition 1 implies that any risk neutral model is obser-

vationally equivalent to a CRRA or a CARA model. The converse, i.e. whether any risk

averse model is observationally equivalent to a risk neutral model, is not true.10 Thus,

by allowing for risk aversion, one does enlarge the set of rationalizable bid distributions

7As shown in the proof of Lemma 1, if condition (ii) is satisfied, then G(·) is rationalized by the

structure [U, F ], where U(x) = exp
∫ x

1 (1/λ(t))dt and F (·) is the distribution of ξ(b, U, G, I) with b ∼ G(·).
Because λ(x) ∼ λ′(0)x in the neighborhood of 0,

∫ 0

1
(1/λ(t))dt = −∞ so that U(0) = 0, as required.

8See Gollier (2001) for other families of vNM utility functions.
9Proposition 1 also implies that any auction model with some wealth w > 0, as defined in footnote 5, is

observationally equivalent to some CRRA/CARA model with zero wealth. Note that λ(·) is independent

of w with a CARA specification as λ(·) = (exp(a·) − 1)/a.
10The following is an example with I = 2 of a CRRA structure that is not observationally equivalent
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relative to risk neutrality. As a matter of fact, Proposition 1 says that allowing for CRRA

or CARA rationalizes any bid distribution in GR.

A model is a set of structures [U, F ]. Hereafter, a structure [U, F ] is nonidentified if

there exists another structure [Ũ , F̃ ] within the model that leads to the same equilibrium

bid distribution. If no such [Ũ , F̃ ] exists for any [U, F ], the model is (globally) identified.

As suggested by Proposition 1, auction models with risk averse bidders are nonidentified.

Proposition 2: Let I ≥ 2 and R ≥ 1. Any structure [U, F ] ∈ UR ×FR is not identified.

As UR and FR do not impose any parametric restrictions, Proposition 2 shows that the

auction model with risk averse bidders is nonparametrically nonidentified. This contrasts

with Guerre, Perrigne and Vuong (2000) who show that the auction model with risk

neutral bidders is nonparametrically identified. Thus the nonidentification of the general

risk aversion model UR × FR arises from the unknown utility function U(·), which is

restricted to the identity function under risk neutrality.

In view of Proposition 2, additional restrictions must be imposed to identify the model.

Two natural identifying strategies are available. First, since little is known in practice

about U(·), while F (·) is approximatively log-normal in some empirical studies, we can

parameterize the private value distribution as F (·; γ) giving the semiparametric model

UR × F(Γ). Alternatively, following the previous discusion, we can parameterize the

utility function as U(·; θ) leading to the semiparametric model U(Θ) × FR. The next

proposition states that parameterizing F (·) is not sufficient to achieve identification.

Proposition 3: Let I ≥ 2 and R ≥ 1. The semiparametric model UR × F(Γ) is not

necessarily identified.

It is sufficient to exhibit a nonidentified semiparametric model. Let I = 2 and F(Γ) =

to any risk neutral structure. Let G(b) = kb for b ∈ [0, 1/2] and G(b) =
[

x2−1
1−x1

b−x1
x2−b

]3/[8(x2−x1)]

for

b ∈ [1/2, 1], where x1 < x2 are roots of −8x2 +11x−2 = 0 and k such that G(·) is continuous at b = 1/2.

This distribution satisfies Definition 3 with R = 1. Because λ(x) = x/(1− c), G(·) can be rationalized by

a CRRA structure where ξ(b, c, G) = b + (1 − c)G(b)/g(b) as soon as 2/5 < c < 1 by Lemma 1-(iii). On

the other hand, from Guerre, Perrigne and Vuong (2000), G(·) is rationalized by a risk neutral structure

if and only if ξ(b, G) = b + G(b)/g(b) is strictly increasing. This function is ξ(b, G) = 2b for 0 ≤ b ≤ 1/2

and ξ(b, G) = − 8
3 (b − 1

2 )(b − 5
4 ) + 1 for 1/2 ≤ b ≤ 1, which is not strictly increasing. Hence there does

not exist a risk neutral structure that is observationally equivalent to the preceding CRRA structure.
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{F (v; γ) = v/γ, v ∈ [0, γ], γ ∈ Γ = (1, 2]}. Any structure [U, F ] with U(x) = xγ−1 then

leads to a uniform bid distribution G(·) on [0, 1] as the solution to (2) gives s(v) = v/γ.

Thus there exists an infinity of structures [U, F ] ∈ UR × F(Γ) leading to the same bid

distribution. More generally, exploiting the monotonicity of the equilibrium strategy, (4)

evaluated at the α-quantile bα of G(·) gives F−1(α; γ) − bα = λ−1(α/g(bα)) for α ∈ [0, 1].

This equation does not contain enough information to identify both γ and λ(·).11

As noted above, a second identifying strategy is to consider the semiparametric model

U(Θ) × FR. We define the CARA model (with regularity R) as the set of structures

[U, F ] ∈ UCARA × FR. The CRRA model is similarly defined as UCRRA × FR. The next

proposition shows that parameterizing U(·) is not sufficient to achieve identification.

Proposition 4: Let I ≥ 2 and R ≥ 1. Any structure [U, F ] in UCARA×FR or UCRRA×FR

is not identified.

It is useful to understand the source of nonidentification by considering the CRRA model.

Let [U, F ] be a CRRA structure and G(·) the corresponding bid distribution. Consider

the alternative CRRA structure [Ũ , F̃ ] with c < c̃ < 1 and F̃ (·) the distribution of

ṽ = b +
1 − c̃

I − 1

G(b)

g(b)
=
c̃− c

1 − c
b+

1 − c̃

1 − c

(
b +

1 − c

I − 1

G(b)

g(b)

)
,

where b ∼ G(·). Because the above function is strictly increasing in b when c < c̃ < 1,

then G(·) can also be rationalized by [Ũ , F̃ ]. Hence [Ũ , F̃ ] is observationally equivalent

to [U, F ]. This result contrasts with Donald and Paarsch (1996, Theorem 1), who obtain

parametric identification of the CRRA model by restricting F̃ (·) and F (·) to have the

same known support. At b = b the above equation indicates that the support of F̃ (·)
must shrink, i.e. ṽ < v, to compensate for the increase in the constant relative risk

aversion parameter c̃ > c. More generally, all the quantiles of F̃ (·) are smaller than the

corresponding ones for F (·) as ṽα = [(c̃− c)/(1 − c)]bα + [(1 − c̃)/(1 − c)]vα with bα < vα

for α ∈ (0, 1]. Intuitively, an increase in risk aversion can be compensated by a shrinkage

in the private value distribution.

11In contrast, if F (·) is known, this equation shows that λ(·) and hence U(·) are nonparametrically

identified on [0, maxv(v − s(v))]. This property is exploited in Lu and Perrigne (2005) who rely on

ascending auction data to estimate F (·) and hence to identify U(·) nonparametrically from first-price

sealed-bid auction data.
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4 Semiparametric Identification

Propositions 3 and 4 show that parameterizing either F (·) or U(·) alone is not sufficient

for identification. Additional identifying restrictions need to be imposed. In the first case,

assuming that the upper bound v is known is not sufficient to identify U(·) nonparamet-

rically. Thus, parameterizing U(·) would be the most natural additional restriction. This

would lead to a full parametric model U(Θ) × F(Γ). In the second case, as the example

after Proposition 4 suggests, imposing a single quantile vα to be the same though un-

known across F (·) may help toward identification, while still providing flexibility about

F (·). For instance, we may require that all F (·) have the same unknown median or upper

bound. Such a quantile restriction is still insufficient as (4) leads to a single equation in

the unknown quantile vα and risk aversion parameter(s) θ.

Hereafter, we exploit heterogeneity across auctions, which arises from variations in

observed characteristics Z and/or the number of bidders I ∈ I. Thus we consider that

private values are drawn from the conditional distribution F (·|Z, I), where Z can be

discrete or continuous with values z in Z ⊂ IRd.12 The support of F (·|z, I) is denoted

[v(z, I), v(z, I)], while G(·|z, I) is the corresponding equilibrium bid distribution defined

on [b(z, I), b(z, I)]. The α-quantiles of F (·|z, I) and G(·|z, I) are denoted vα(z, I) and

bα(z, I), respectively. Our identifying assumptions are as follows.

Assumption A1: For I a subset of {2, 3, . . .} and R ≥ 1,

(i) U(·) = U(·; θ) ∈ UR for every θ ∈ Θ ⊂ IRp,

(ii) F (·|·, ·) ∈ FR(Z × I) ≡ {F (·|·, ·) : F (·|z, I) ∈ FR, ∀(z, I) ∈ Z × I}.
(iii) For some α ∈ (0, 1], vα(z, I) = vα(z, I; γ) for all (z, I) ∈ Z×I and some γ ∈ Γ ⊂ IRq,

(iv) The function φα(z, I; θ, γ) ≡ λ(vα(z, I; γ) − bα(z, I); θ) for (z, I) ∈ Z × I determines

uniquely (θ, γ) ∈ Θ × Γ.

Condition (i) requires that U(·) belongs to a parametric family of smooth utility functions

such as CRRA and CARA.13 Condition (ii) requires that F (·|z, I) satisfies the regularity

conditions of Definition 2 for every (z, I) ∈ Z × I. Condition (iii) is a parametric condi-

tional quantile specification on vα(z, I). See Powell (1994). For instance, vα(·, ·; γ) can be

12Such a specification allows for unobserved heterogeneity across objects provided I is a sufficient

statistic for such unobserved heterogeneity conditional upon Z. See Campo, Perrigne and Vuong (2003).
13If wealth w is unknown, then w is included in θ. See also footnote 5.
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chosen to be a constant or a polynomial, where γ is the vector of unknown coefficients.

If α = 1, a parametric specification of the upper bound v(z, I) is considered. The case of

a common support then corresponds to a constant specification of v(z, I). On the other

hand, no assumption is made on the lower bound v(z, I), i.e. α = 0, as it is nonparamet-

rically identified from the boundary condition v(z, I) = b(z, I). An alternative identifying

assumption to (iii) would specify parametrically the difference vα(z, I) − v(z, I). This

would be equivalent to imposing a restriction on the α-quantile as v(z, I) can be recov-

ered from b(z, I). In particular when α = 1, the latter corresponds to a parametric

specification of the length v(z, I) − v(z, I) of the support of F (·|z, I).
Condition (iv) is the crucial identifying condition. For instance, consider a CRRA

model with a constant α-quantile, i.e. vα(z, I; γ) = γ. This gives

λ(γ − bα(z, I); θ) =
γ − bα(z, I)

θ
=

α

(I − 1)g(bα(z, I)|z, I)

from (4) evaluated at the α-quantile, where θ = 1− c. This equation determines uniquely

(θ, γ) as soon as there exist two different values for bα(z, I). This is possible from a

variation in Z and/or a variation in I. Similarly, a CARA model with a constant condi-

tional quantile restriction is identified. More generally, condition (iv) implies the “order”

condition Card (Z × I) ≥ p + q. Furthermore, it exploits variations in the shading

vα(z, I)− bα(z, I) across (z, I) arising from different effects of Z and I on vα and bα. For

instance, when I is exogenous so that F (·|·, I) does not depend on I, an increase in I

reduces the shading.14 Consequently, a shift between F (·|z, I) and G(·|z, I) is excluded.

Altogether, Assumption A1 is not as restrictive since a parameterization of a single quan-

tile is needed, while this specification can include a polynomial of sufficiently high degree

to capture possible nonlinearities. In particular, F (·|·, ·) is left almost entirely unspecified.

The next proposition establishes the semiparametric identification of the first-price

auction model with risk averse bidders. It relies upon the key equation (4) evaluated at

the α-quantile bα(z, I), which gives

g(bα(z, I)|z, I) =
1

I − 1

α

λ(vα(z, I; γ) − bα(z, I); θ)
, (5)

14This idea and more generally exclusion restrictions are exploited in Guerre, Perrigne and Vuong

(2005) to identify nonparametrically U(·) and F (·|·).
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for any (z, I) ∈ Z × I, where λ(·; θ) = U(·; θ)/U ′(·; θ).

Proposition 5: The semiparametric model defined as the set of structures [U, F ] satisfy-

ing Assumption A1 is identified.

Proposition 3 provides a semiparametric identification result since U(·) is parametrically

identified through θ while F (·|·) is nonparametrically identified subject to a parametric

conditional quantile restriction. It is worthnoting that dropping either one of these para-

meterizations would lead to a nonidentified model. For instance, assume that vα(z, I) is

left unspecified, while a parametric specification for U(·) is retained, leading to the semi-

parametric model composed of structures [U, F ] satisfying A1-(i,ii). Such a model would

not be necessarily identified. An example is the CRRA model with F (·|·, ·) ∈ FR(Z ×I).

The argument is similar to that given after Proposition 2, where G(·) and g(·) are re-

placed by G(·|·, ·) and g(·|·, ·), respectively. Hence, restricting the utility function to be

parametric does not achieve identification, despite that U(·) does not vary with (Z, I).

Likewise, suppose that the utility function is left unspecified while a parametric con-

ditional quantile restriction is retained, leading to the semiparametric model composed

of structures [U, F ] satisfying A1-(ii,iii) with U(·) ∈ UR. This model is not necessarily

identified. Specifically, let [U, F ] be such a structure and consider the structure [Ũ , F̃ ],

where Ũ(x) = c1[U(x/δ)]δ if 0 ≤ x < δ2 and Ũ(x) = c2U(x + δ(1 − δ)) if x ≥ δ2, where

0 < δ < 1, c1 = c2[U(δ)]1−δ, and c2 = 1/U(1 + δ(1 − δ)).15 Let F̃ (·|z, I) be the distri-

bution of ξ̃(b|z, I) = b + λ̃−1 (G(b|z, I)/[(I − 1)g(b|z, I)]) , where b ∼ G(·|z, I). It can be

shown that [Ũ , F̃ ] rationalizes G(·|·, ·) and that F̃ (·|·, ·) satisfies A1-(ii,iii). Hence, the

parameterization of the conditional quantile of F (·|z, I) is not sufficient for identification.

5 Optimal Convergence Rate

Given the nonstandard nature of our model, it is especially useful to derive the optimal

(best) convergence rate that can be attained by semiparametric estimators of the risk

averison parameter(s) θ. This is the purpose of this section. The optimal convergence rate

15Note that Ũ(0) = 0, and Ũ(·) has R+2 continuous derivatives on (0, δ)∪ (δ, +∞). Thus Ũ(·) ∈ UR if

Ũ(·) has R+2 continuous derivatives at x = δ2. Hence Ũ(·) should be smoothed out in the neighborhood

of x = δ2 to be R + 2 continuously differentiable on (0, +∞). We omit this smoothing requirement.
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for estimating the conditional density f(·|·, ·) will follow from Guerre, Perrigne and Vuong

(2000). We first need to strengthen our regularity assumptions on F (·|·, ·) and U(·; ·) with

respect to (z, I) and θ. Regarding F (·|·, ·), we introduce the following definition, which

parallels Definition 2 taking into account the conditioning variables (Z, I).

Definition 4: For R ≥ 1 and some unknown v and v, 0 ≤ v < v < +∞, let F∗
R ≡

F∗
R(Z × I) be the set of conditional distributions F (·|·, ·) satisfying

(i) ∀(z, I) ∈ Z × I, v(z, I) = v and v(z, I) = v,

(ii) ∀I ∈ I, F (·|·, I) admits R + 1 continuous derivatives on [v, v] ×Z,

(iii) ∀I ∈ I, inf(v,z)∈[v,v]×Z f(v|z, I) > 0.

While conditions (ii) and (iii) are straightforward extensions of Definition 2-(ii)-(iii), con-

dition (i) needs further discussion. Assuming a constant lower boundary v(z, I) = v

simplifies the proof of the smothness of s(·, ·, I) in Guerre and Vuong (2006), which is

needed to obtain the smoothness of the bid distribution. Such a restriction, however,

is not used in estimation as v(z, I) can be recovered from b(z, I). Regarding the upper

boundary restriction, our estimation procedure relies on (5), which requires an estimate

for bα(z, I). There is an important difference between estimating a quantile with α ∈ (0, 1)

and estimating the upper boundary (α = 1). In particular, the convergence rate for esti-

mating the latter is faster than for estimating the former. This suggests that the optimal

convergence rate for estimating θ cannot be faster when considering an α-quantile restric-

tion with α ∈ (0, 1) than when considering the upper boundary. Hereafter, we thus focus

on α = 1, and for sake of simplicity, we consider a constant upper boundary so that q = 1.

In other words, we assume a common but unknown support for the distributions F (·|z, I),
where (z, I) ∈ Z × I. Such an assumption is implicitely made in parametric estimation.

We next derive the smoothness properties of G(·|·, ·) corresponding to a structure

[U, F ] in UR ×F∗
R and hence of the implied statistical model for the observables. Lemma

2 extends Lemma 1-(i) to the case with exogenous variables (Z, I) and is proved in Guerre

and Vuong (2006).

Lemma 2: Let I ⊂ {2, 3, . . .}, R ≥ 1 and Z be a rectangular compact of IRd with

nonempty interior.16 For every I ∈ I, the conditional distribution G(·|·, I) corresponding

16To simplify, discrete exogenous variables are excluded. If not, our next results continue to hold with

suitable modifications.
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to a structure [U, F ] ∈ UR × F∗
R satisfies

(i) The upper boundary b(z, I) admits R+ 1 continuous derivatives with respect to z ∈ Z
and infz∈Z(b(z, I) − b(z, I) > 0, where b(z, I) = v,

(ii) G(·|·, I) admits R + 1 continuous partial derivatives on SI(G) ≡ {(b, z); z ∈ Z, b ∈
[b(z, I), b(z, I)]},
(iii) g(b|z, I) > cg > 0 for all (b, z) ∈ SI(G),

(iv) g(·|·, I) admits R + 1 continuous partial derivatives on Su
I (G) ≡ {(b, z); z ∈ Z, b ∈

(b(z, I), b(z, I)]},
(v) limb↓b(z,I) ∂

r[G(b|z, I)/g(b|z, I)]/∂br exists and is finite for r = 1, . . . , R+1 and z ∈ Z.

We then consider the semiparametric model composed of structures [U, F ] satisfying:

Assumption A2: Let I ⊂ {2, 3, . . .}, R ≥ 1 and Z be a rectangular compact of IRd with

nonempty interior.

(i) In addition to A1-(i), U(·; ·) is R + 2 continuously differentiable on (0,+∞) × Θ,

(ii) F (·|·, ·) ∈ F∗
R,

(iii) The function φ1(z, I; θ, v) ≡ λ(v − b(z, I); θ) for (z, I) ∈ Z × I determines uniquely

(θ, v) ∈ Θ × (0,+∞).

Conditions (i) and (ii) strengthen A1-(i,ii,iii). Condition (iii) simply expresses A1-(iv) at

the upper boundary under a constant restriction. Thus (5) becomes

g(b(z, I)|z, I) =
1

I − 1

1

λ(v − b(z, I); θ)
, (6)

for all (z, I) ∈ Z × I. Let β = (θ, v).

It remains to specify the data generating process. For the `th auction, one observes

all the bids Bi`, i = 1, . . . , I`, the number of bidders I` ≥ 2 as well as the d-dimensional

vector Z` characterizing object heterogeneity. This gives a total number N =
∑L

`=1 I` of

bids, where L is the number of auctions. Following the game theoretical model of Section

2, we make the following assumption.17

Assumption A3:

(i) The variables (Z`, I`), ` = 1, 2 . . . are i.i.d. with support Z × I, where I is finite, and

with density fZI(·, ·) satisfying 0 < inf(z,I)∈Z×I fZI(z, I) ≤ sup(z,I)∈Z×I fZI(z, I) < +∞,

17Assumption 3-(i) can be weakened allowing Z`s not to be i.i.d. distributed as Theorem 3 is derived

conditionally upon (Z1, I1, . . . , Z`, I`).
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(ii) For every `, the private values Vi`, i = 1, . . . , I` are i.i.d. conditionally upon (Z`, I`)

as F0(·|Z`, I`),

(iii) The semiparametric model is correctly specified, i.e. the true utility function U0(·)
and conditional distribution F0(·|·, ·) satisfy A2 for some θ0 ∈ Θ and 0 ≤ v0 < v0 < +∞.

As in Horowitz (1993), we invoke the minimax theory developed by e.g. Ibragimov

and Has’minskii (1981) to establish the optimal rate at which β = (θ, v) can be estimated.

We consider the following norms

||β||∞ = max(|θ1|, . . . , |θp|, |v|), ||f(·|·, ·)||∞ = sup
(z,I)∈Z×I

sup
v∈[v,v]

|f(v|z, I)|

and define the set of conditional densities

F∗
R(M) =

{
f(·|·, ·) ∈ F∗

R;

∥∥∥∥∥
∂Rf(·|·, ·)
∂vR

∥∥∥∥∥
∞
< M

}
,

for M > 0. As usual in studies of convergence rates, one considers a neighborhood of the

true parameters (β0, f0) in order to exclude superefficiency, i.e.

Vε(β0, f0) = {(β, f) ∈ Θ × (0,+∞) × F∗
R(M); ‖β − β0‖∞ < ε,

‖(f(·|·, ·)− f0(·|·, ·))1I(f(·|·, ·)f0(·|·, ·) > 0)‖∞ < ε},

where the indicator function restricts comparison of conditional densities on the inter-

section of their supports. Let Prβ,f be the joint distribution of the Vi`s and the (Z`, I`)s

under (θ, f, fZI) with fZI the joint density of the (Z`, I`)s. The next theorem gives an

upper bound for the optimal rate when estimating β0. Let Θo denote the interior of Θ.

Theorem 2: Under A2-A3, for any β0 ∈ Θo × (0,+∞), any f0 ∈ F∗
R(M) and any

deterministic sequence ρN such that ρNN
−(R+1)/(2R+3) → +∞, there exists a diverging

deterministic sequence tN → +∞ such that

lim
ε→0

lim
N→+∞

inf
β̃N

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN (β̃N − β)‖∞ ≥ tN

)
≥ 1/2,

where the infimum is taken over all possible estimators β̃N of β based upon (Bi`, Z`, I`),

i = 1, . . . , I`, ` = 1, . . . , L.

Theorem 2 reveals the nonparametric nature of the parameter β, which cannot be esti-

mated at a faster rate than N (R+1)/(2R+3). More precisely, for any estimator β̃N , Theorem
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2 shows that ρN(β̃N − β) diverges with probability at least 1/2. Thus ρN diverges too

fast and β cannot be estimated at a rate faster than N (R+1)/(2R+3) , which is smaller than

the parametric rate
√
N . On the other hand, Theorem 3 in Section 6 will show that there

exists an estimator β̂N converging at the rate N (R+1)/(2R+3). Therefore, the optimal rate

of convergence for estimating β0 in the minimax sense is N (R+1)/(2R+3), i.e. N2/5 when

R = 1, which is independent of the dimension d of the exogenous variables Z.

The main idea of the proof is to consider suitable perturbations of the true para-

meters (β0, f0). For instance, when R = 1, we consider the bid density gN(b|z, I) =

g0(b|z, I)+ [m(z, I; βN) −m(z, I; β0)]ψ
(
κ
√
ρN(b− b0(z, I))

)
, where ψ : IR− → IR is com-

pactly supported with ψ(0) = 1, and
∫
ψ(x)dx = 0, while

m(z, I; β) =
1

I − 1

1

λ(v − b0(z, I); θ)
, (7)

κ > 0, and ‖βN − β0‖∞ = O(1/ρN). Using Lemmas 1 and 2, we first establish that each

such density can be rationalized by an auction model with (βN , fN(·|·, ·)) ∈ Vε(β0, f0) for

ρN sufficiently large. We then show that the probability distributions of the Bi`s under

gN(·|·, ·) and g0(·|·, ·) cannot be distinguished statistically from each other.

6 Semiparametric Estimation

This section proposes a semiparametric procedure for estimating the parameter(s) θ in the

utility function U(·; θ) and the conditional latent private value density f(·|·, ·). Because

f(·|·, ·) is not parameterized, the estimation problem is semiparametric. A first subsection

presents the different steps of our semiparametric procedure, while a second subsection

establishes the asymptotic properties of our estimator of θ.

6.1 A Semiparametric Procedure

Our semiparametric procedure relies on the identifying relation obtained from (6) and (7)

g0(b0(z, I)|z, I) =
1

I − 1

1

λ(v0 − b0(z, I); θ0)
= m(z, I; β0), ∀(z, I) ∈ Z × I, (8)

where the subscript 0 indicates the truth. If one knew the upper boundary b0(·, ·) and

the density g0(·|·, ·), one could recover β0 = (θ0, v0) from (8) given the parametric form
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for λ(·; ·). From the knowledge of G0(·|·, ·) and θ0, one could then recover bidders’ private

values vi from (4) to estimate f0(·|·, ·). This suggests the following three steps procedure:

• Step 1: From observed bids, estimate nonparametrically b0(·, ·) and g0(b0(·, ·)|·, ·) at

the observed values (Z`, I`),

• Step 2: Using (8), where g0(b0(Z`, I`)|Z`, I`) and b0(Z`, I`) are replaced by their

estimates from the first step, estimate β0 ≡ (θ0, v0) using NLLS by β̂N ≡ (θ̂N , v̂N),

• Step 3: Using (4), where G0(·|·, ·), g0(·|·, ·) and λ(·; θ0) are replaced by their non-

parametric estimators and λ(·; θ̂N), recover the pseudo private values v̂i to estimate

nonparametrically f0(·|·, ·).

Nonparametric Boundary Estimation

This step consists in estimating the upper boundary b0(·, ·) and the conditional density

g0(·|·, ·) at the upper boundary. We first discuss the estimation of b0(·, ·). Fix I ∈ I. By

Lemma 2-(i), b0(·, I) is R+ 1 continuously differentiable on Z. Following Korostelev and

Tsybakov (1993), one introduces a partition of Z into bins increasing with N . The bound-

ary estimator of b0(z, I) for z in an arbitrary bin is obtained by minimizing the volume of

the cylinder whose base is the bin and whose upper surface is defined by a polynomial of

degree R in z ∈ IRd subject to the constraint that the observations are contained in such

a cylinder. The optimal polynomial evaluated at z gives the boundary estimate b̂N(z, I).

Under appropriate vanishing size ∆N of the bins, namely ∆N ∝ (logN/N)1/(R+1+d), the

resulting piecewise polynomial estimator converges to b0(·, I) uniformly on Z at the rate

(N/ logN)(R+1)/(R+1+d) , which is strictly faster that
√
N whenever R ≥ d. For instance,

for R = 1 and d = 1, partition Z = [z, z] into kN bins {Zk; k = 1, . . . , kN} of equal length

∆N ∝ (logN/N)1/3. On each Zk = [zk, zk), the estimate of the upper boundary is the

straight line âk + b̂k(z − zk), where (âk, b̂k) is obtained by solving

min
{(ak ,bk):Bi`≤ak+bk(Z`−zk),i=1,...,I`=I,Z`∈Zk}

∫ zk

zk

ak + bk(z − zk)dz = ak∆N + bk∆
2
N/2.

This estimator converges at the uniform rate (N/ logN)2/3.

Turning to the estimation of g(·|·, ·), it is well-known that standard kernel density

estimators suffer from bias at boundary points. To minimize such boundary effects, we
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consider a one-sided kernel density estimator. Let Φ(·) be a one-sided kernel with support

[−1, 0] satisfying A4-(iii) given below. For every ` = 1, . . . , L and i = 1, . . . , I`, define

Yi` ≡
1

hN
Φ

(
Bi` − b0(Z`, I`)

hN

)
, Ŷi` ≡

1

hN
Φ


Bi` − b̂N(Z`, I`)

hN


 , (9)

where hN is a bandwidth. Lemma B3 shows that Yi` is an asymptotically unbiased

estimator of g0(b0(Z`, I`)|Z`, I`) given (Z`, I`) as hN vanishes.18 Because b0(·, ·) is unknown,

we define Ŷi` similarly to Yi`, where b0(·, ·) is replaced by its estimator b̂N(·, ·).

Semiparametric Estimation of β0

Let FL be the σ-field generated by Z`, ` = 1, . . . , L. In view of (8)-(9) we consider

Yi` = m(Z`, I`; β0) + ei` + εi`, (10)

where ei` ≡ E[Yi`|FL]−m(Z`, I`, β0) and εi` = Yi` −E[Yi`|FL]. Lemma B3 shows that the

bias term ei` = O(hR+1
N ), while the variance of the error term εi` is an O(1/hN), namely,

Var[εi`|FL] =
m(Z`, I`; β0) + o(1)

hN

∫
Φ2(x)dx. (11)

Hence, the Yi`s obey a regression model with a vanishing bias and an error variance

diverging to infinity as hN vanishes. The latter feature raises some technical difficulties

when deriving the asymptotic properties of β̂N . In particular, the diverging variance is

the main reason why our estimator does not achieve the parametric rate. Specifically, its

rate N (R+1)/(2R+3) is smaller than
√
N but is optimal in the minimax sense.

Equation (10) suggests to estimate β0 by possibly weighted NLLS, i.e. by minimizing

QN (β) =
L∑

`=1

I∑̀

i=1

ω(Z`, I`)[Yi` −m(Z`, I`; β)]2 (12)

with respect to β = (θ, v) ∈ Bδ, where the ω(Z`, I`)s are strictly positive weights and Bδ =

{(θ, v); θ ∈ Θ, sup(z,I)∈Z×I b0(z, I)+δ ≤ v ≤ vsup} for some δ > 0 and vsup > 0. The set Bδ

is introduced to bound m(·, ·; β) away from 0. Because b0(·, ·) in m(·, ·; β) is unknown, it

is replaced by its estimator. Thus, our estimator of β is β̂N = Argminβ∈BN
Q̂N(β), where

Q̂N (β) =
L∑

`=1

I∑̀

i=1

ω(Z`, I`)[Ŷi` − m̂(Z`, I`; β)]2 (13)

18Note that Y ` = (1/I`)
∑I`

`=1 Yi` has a kernel type form with a one-sided kernel, though I` remains

bounded and hence does not increase with N in our case.
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m̂(z, I; β)=
1

I−1

1

λ(v−b̂N(z, I); θ)
, BN ={(θ, v); θ ∈ Θ, max

1≤`≤L
b̂N(Z`, I`)+δ/2 ≤ v ≤ vsup}.

Nonparametric Estimation of f(·|·)
This step is similar to the second step in Guerre, Perrigne and Vuong (2000) with the

difference that λ(·; θ0) in (4) is estimated by λ(·; θ̂N), while λ(·) was the identity in that

paper. We first need an estimate of the ratio G0(·|·, ·)/g0(·|·, ·) evaluated at (Bi`, Z`, I`).

For an arbitrary (b, z, I), the ratio G0(b|z, I)/g0(b|z, I) is estimated by

Λ̂(b, z, I) =
hd+1

g

hd
G

∑
{`;I`=I}

1
I`

∑I`
i=1 1I(Bi` ≤ b)KG

(
z−Z`

hG

)

∑
{`;I`=I}

1
I`

∑I`
i=1Kg

(
b−Bi`

hg
, z−Z`

hg

) ,

where KG(·) and Kg(·) are kernels of order R + 1 with bounded supports, and hG and

hg are bandwidths vanishing at the rates (N/ logN)1/(2R+d+2) and (N/ logN)1/(2R+d+3),

respectively. The pseudo private values are then

V̂i` = Bi` + λ−1
(

1

I` − 1
Λ̂(Bi`, Z`, I`); θ̂N

)
,

if (Bi`, Z`) + S(2hG) ⊂ Ŝ(GI`
) and (Bi`, Z`) + S(2hg) ⊂ Ŝ(GI`

). Otherwise, we let

V̂i` be infinity, which corresponds to a trimming. The sets S(2hG) and S(2hg) are the

supports of KG(·/(2hG)) and Kg(·/(2hg)), respectively. The set ŜI(G) is the estimated

support of the conditional bid distribution G0(·|·, I). Specifically, ŜI(G) = {(b, z) : b ∈
[b̂N(z, I), b̂N (z, I)], z ∈ Z}, where b̂N(·, I) is defined similarly to b̂N (·, I).

The N pseudo private values V̂i` are used in a standard kernel estimation of f0(·|·, ·).
Namely, for an arbitrary pair (v, z, I), f(v|z, I) is estimated by

f̂(v|z, I) =
hd

Z

hd+1
f

∑
`;I`=I

1
I`

∑I`
i=1Kf

(
v−V̂i`

hf
, z−Z`

hf

)

∑
`;I`=I KZ

(
z−Z`

hZ

) ,

where Kf (·) and KZ(·) are kernels of order R and R+1 with bounded supports, and hf and

hZ are bandwidths vanishing at the rates (N/ logN)1/(2R+d+3) and (L/ logL)1/(2R+d+2).

Because θ̂N converges at a faster rate, it follows from Guerre, Perrigne and Vuong

(2000) that f̂(·|·) is uniformly consistent on compact subsets of its support at the rate

(N/ logN)R/(2R+d+3), which is optimal for estimating f0(·|·) from observed bids.
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6.2 Asymptotic Properties

We make the next assumptions on δ, (θ0, v0), the weights ω(·, ·), the kernel Φ(·), the

bandwidth hN and the rate of uniform convergence a−1
N of the boundary estimator b̂N (·, ·).

Assumption A4:

(i) δ is such that 0 < δ < v0 − sup(z,I)∈Z×I b0(z, I). Moreover, (θ0, v0) belongs to Θo ×
(0, vsup) for some vsup <∞, where Θ is a compact of IRp, and

Span(z,I)∈Z×I

{
∂λ(v0 − b0(z, I); θ0)

∂β

}
= IRp+1,

(ii) The weight functions ω(·, ·) are uniformly bounded away from zero and infinity, i.e.

inf(z,I)∈Z×I ω(z, I) > 0 and sup(z,I)∈Z×I ω(z, I) <∞,

(iii) The kernel Φ(·) is continuously differentiable on IR− with support [−1, 0] and satisfies
∫

Φ(x)dx = 1,
∫
xjΦ(x)dx = 0 for j = 1, . . . , R,

(iv) hN = o(1) with NhN → ∞,

(v) sup(z,I)∈Z×I |b̂N(z, I) − b0(z, I)| = OP (aN) with aN = o
(
min

{
hR+2

N ,
√
hN/N

})
.

Regarding the first part of A4-(i), recall that sup(z,I)∈Z×I b0(z, I) < v0 by Theorem

1-(i), Lemma 2-(i) and the compactness of Z × I. The second part of A4-(i) is standard

in parametric estimation and strengthens A1-(iv). It implies that b0(z, I) must have at

least p+1 different values. As shown in Lemma B7, combined with A4-(ii), it ensures that

A(β) ≡ 1

E[I]
E

[
Iω(z, I)

∂m(z, I; β)

∂β
· ∂m(z, I; β)

∂β ′

]
(14)

B(β) ≡ 1

E[I]
E

[
Iω2(z, I)m(z, I; β)

∂m(z, I; β)

∂β
· ∂m(z, I; β)

∂β ′

]
(15)

are full rank matrices in a neighborhood of β0. Though our kernel Φ(·) is one-sided, A4-

(iii,iv) are standard in kernel estimation when using higher order kernels. Assumption

A4-(v) requires that b̂N(·, ·) converges faster than θ̂N (see Theorem 3-(i) for the latter)

so that estimation of the boundary does not affect the asymptotic distribution of θ̂N .

For instance, when R = 1 and d = 1, we have aN = (logN/N)2/3 from Korostelev and

Tsybakov (1993). If hN is exactly of order N−1/5, which gives the optimal convergence

rate of θ̂N by Theorems 2 and 3, then A4-(v) is satisfied. More generally, when d ≥ 1 and

hN is exactly of the optimal order N−1/(2R+3), it is easily checked that R ≥ d is sufficient

for the convergence rate a−1
N = (N/ logN)(R+1)/(R+1+d) of b̂N (·, ·) to satisfy A4-(v).
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Analogously to (14) and (15), we introduce the following (p+1)-square matrices

AN (β) =
L∑

`=1

I`ω(Z`, I`)
∂m(Z`, I`; β)

∂β
· ∂m(Z`, I`; β)

∂β ′ , (16)

BN (β) =
L∑

`=1

I`ω
2(Z`, I`)m(Z`, I`; β)

∂m(Z`, I`; β)

∂β
· ∂m(Z`, I`; β)

∂β ′ , (17)

which, when normalized by N , are consistent estimators of A(β) and B(β) as shown in

Lemma B8. Since m(·, ·; β) is unknown, let ÂN(β) and B̂N(β) be defined as AN (β) and

BN(β) with m(·, ·; β) replaced by m̂(·, ·; β). Moreover, let

b(β, g0) =

∫
xR+1Φ(x)dx

(R + 1)!

1

E[I]
E

[
Iω(Z, I)

∂R+1g0(b0(Z, I)|Z, I)
∂bR+1

∂m(Z, I; β)

∂β

]
, (18)

which gives the asymptotic bias of our estimator.

The next result establishes the consistency and asymptotic normality of β̂N . It also

provides its rate of convergence and an estimator of its asymptotic variance.

Theorem 3: Under A2–A4,

(i) β̂N
P→ β0 with β̂N −β0 = OP

(
hR+1

N + 1/
√
NhN

)
, so the best rate of convergence of β̂N

is N (R+1)/(2R+3), which is achieved when hN is of exact order N−1/(2R+3).

(ii) If limN→∞
√
NhNh

R+1
N = ∞, then (1/hR+1

N )
(
β̂N − β0

)
P→ A(β0)

−1b(β0, g0).

(iii) If limN→∞
√
NhNh

R+1
N = c ≥ 0, then

√
NhN

(
β̂N − β0

)
d→ N

(
cA(β0)

−1b(β0, g0), A(β0)
−1B(β0)A(β0)

−1
∫

Φ2(x)dx
)
.

Moreover, consistent estimators of A(β0) and B(β0) are N−1ÂN (β̂N) and N−1B̂N(β̂N ).

On technical grounds, the proof of Theorem 3-(i) is complicated by the divergence of

the error variance (11) in the nonlinear model (10). In particular, omitting the estimation

of the upper boudary b(·, ·), which has no effect by A4-(v), (1/N)QN(β) = OP(1/hN)

because of the diverging variance. Hence, (1/N)QN(β) does not have a finite limit. This

would lead to consider hNQN(β)/N , but its limit is a constant. To overcome this difficulty,

we show that (QN(β) −QN (β0) −QN (β))/N vanishes asymptotically, where

QN(β) =
L∑

`=1

I`ω(Z`, I`)[m(Z`, I`; β) −m(Z`, I`; β0)]
2. (19)
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Consistency of β̂ can then be established by standard arguments using the objective

function QN (β) (see, e.g. White (1994)).

Theorem 3-(ii,iii) gives the asymptotic distribution of β̂N − β0 and its rate of conver-

gence. In particular, our proof shows that β̂N − β0 is approximately distributed as

hR+1
N A−1(β0)b(β0, g0) +

1√
NhN

A−1(β0) N
(
0, B(β0)

∫
Φ2(x)dx

)
.

This expansion corresponds to the usual bias/variance decomposition of nonparametric

estimators (see e.g. Härdle and Linton (1994)). When Nh2R+3
N → 0, the leading term is

the second term, and we obtain

√
NhN

(
β̂N − β0

)
d→ N

(
0, A(β0)

−1B(β0)A(β0)
−1
∫

Φ2(x)dx
)
.

When Nh2R+3
N → ∞, it is the first term, i.e. the bias. Thus, the best convergence rate

of β̂N is achieved when the variance and the bias are of the same order, i.e. when hN is

exactly of order N−1/(2R+3), in which case β̂N − β0 = OP (N−(R+1)/(2R+3)).19

The best convergence rate N (R+1)/(2R+3) of β̂N corresponds to the optimal rate for

estimating an univariate density with R+1 bounded derivatives. Moreover, it is indepen-

dent of the dimension d of Z and hence avoids the curse of dimensionality encountered

in nonparametric estimation. This seems surprising in view of (8), which suggests that

β0 is as difficult to estimate as the conditional density g0(·|·, ·), while the latter cannot

be estimated faster than N (R+1)/(2R+3+d) from Stone (1982) given the (R + 1) bounded

derivatives of g0(·|·, I). The faster rate N (R+1)/(2R+3) can be explained by noting that

(8) leads to the moment conditions E[{g0(b0(Z, I)|Z, I) − m(Z, I; β0)}W (Z, I)] = 0 for

any vector function W (·). Integrating with respect to Z intuitively improves the rate

of convergence by eliminating the Z dimension. This is similar to Newey and McFad-

den (1994) though Assumptions (iii)-(iv) of their Theorem 8.1 are not satisfied here. In

fact, because the variance (11) is diverging, our proof shows that the average gradient

19When hN is optimally chosen, the estimator β̂N is asymptotically biased. In a similar problem,

Horowitz (1992) proposes a correction based on the estimation of the bias. See also Bierens (1987).

Another bias correction using a modification of the Yi`s could be based on Hengartner (1997). From

Liu and Brown (1993), however, such a bias correction cannot hold in the minimax sense of Theorem 2.

Because the limit results used in the proof hold uniformly with respect to (β, f) in a neighborhood of

(β0, f0), β̂N is rate efficient in the sense of Theorem 2.
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(1/N)∂Q̂N (β0)/∂β = OP(hR+1 +1/
√
NhN), which is different from the usual OP(1/

√
N).

Hence, β̂N converges at a slower rate than
√
N .

Theorem 3-(iii) is used to make inference on β0 as it gives an estimate of the variance of

β̂N , i.e. (
∫

Φ2(x)dx/hN)Â−1
N (β̂N)B̂N(β̂N)Â−1

N (β̂N). Note that β̂N depends on ω(·, ·), which

can be chosen optimally as in weighted NLLS. From (11), the optimal weight function

ω∗(·, ·) is inversely proportional to the variance, i.e. ω∗(·, ·) = 1/m(·, ·; β0). This optimal

weighted NLLS estimator β̂∗
N can be implemented by a two-stage procedure, in which

ω∗(·, ·) is estimated by 1/m̂(·, ·; β̂N), where β̂N is obtained in the first step by ordinary

NLLS. The estimate of the variance of β̂∗
N then reduces to (

∫
Φ2(x)dx/hN)Â−1

N (β̂∗
N). This

is the best variance achievable in the regression model (10) with ei` = 0.

7 Extensions

The benchmark model highlights the identification issues arising from bidders’ risk aver-

sion in first-price sealed-bid auctions. A number of extensions can be useful in practice

such as a binding reserve price, affiliated private values and asymmetries among bidders.20

7.1 Reserve Price

An announced binding reserve price p0 ∈ (v, v) acts as a screening device to bidders’

participation.21 Let G∗(·) the observed bid distribution and I∗ the observed number of

active bidders with I∗ ≤ I. From the boundary condition s(p0) = p0, we have G∗(b∗) =

(F (v) − F (p0))/(1 − F (p0)) with b∗ = s(v). Hence, similarly to (4), (2) implies

vi = b∗i + λ−1

(
1

I − 1

G∗(b∗i )

g∗(b∗i )
+

1

I − 1

1

g∗(b∗i )

F (p0)

1 − F (p0)

)
≡ ξ(b∗i , G

∗, I, F (p0)), (20)

for i = 1, . . . , I∗. In contrast to (4), I and F (p0) are unknown. Definitions 1, 2 and 3

remain the same with the exception that p0 replaces b in Definition 3 and limb↓p0 g
∗(b) =

+∞. Given that I∗ is Binomial distributed with parameters [I, 1 − F (p0)], the observed

bid distribution G∗(·, . . . , ·) conditionally on I∗ is rationalized if and only if Lemma 1

20For every case, we assume that Theorem 1 extends.
21The case of a random or secret reserve price is treated in Perrigne (2003).
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is satisfied with GR and ξ(·) as defined above. This result is shown using Lemma 1 and

Guerre, Perrigne and Vuong (2000, Theorem 4). Note that I and F (p0) are identified

from the distribution of I∗.

From this rationalization result, any G∗(·) ∈ GR can be rationalized by a CRRA or

CARA structure with F (·) ∈ FR. Hence, any structure [U, F ] ∈ UR ×FR is not identified.

Moreover, parameterizing the utility function such as CRRA or CARA is not sufficient

to achieve identification. The proofs of these results follow those of Propositions 1, 2 and

4, where G(·)/g(·) is replaced by G∗(·)/g∗(·) +F (p0)/[(1−F (p0))g
∗(·)] in view of (4) and

(20).22 As for a nonbinding reserve price, an increase in the aversion parameter can be

compensated by lower quantiles of the private value distribution suggesting the need for

a restriction on a single quantile to identify the model. With auction characteristics and

a binding reserve price, the key identifying equation (5) becomes

g∗(bα(z, I)|z, I) =
1

I − 1

α + F (p0|z,I)
1−F (p0|z,I)

λ(vα(z, I; γ) − bα(z, I); θ)
. (21)

Under A1, θ is semiparametrically identified.

Estimation is performed by adapting the procedure in Section 6.1 following Guerre,

Perrigne and Vuong (2000, Section 4.2). In particular, the first step requires estimators of

I and F (p0|z, I). Assuming that I is constant across auctions, a natural estimator for I

is Î = max` I
∗
` , while an estimator for F (p0|z) is obtained from E(I∗|z) = I[1 − F (p0|z)].

In the second step, the weighted NLLS is based on (21), where I and F (p0|z) are replaced

by their estimates. The consistency rate is optimal and as before, namely N (R+1)/(2R+3) ,

which is independent of the dimension of Z.

7.2 Affiliated Private Values

Following Milgrom and Weber (1982), the private values (v1, . . . , vI) are distributed as

F(·, . . . , ·), which is exchangeable and affiliated. Bidder i’s expected profit is U(vi −
bi)GBi|bi

(bi|bi), where Bi = maxj 6=i bj, bi = s(vi) and GBi|bi
(bi|bi) is the probability that

bi ≥ Bi conditional on bi. By symmetry, GBi|bi
(·|·) = GB|b(·|·), for i = 1, . . . , I, while (4)

22Note that Proposition 3 still holds as the example of a nonidentified semiparametric model UR×F(Γ)

can be adapted with a truncation on the bid distribution at the reserve price.
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becomes

vi = bi + λ−1

(
GB|b(bi|bi)
gB|b(bi|bi)

)
≡ ξ(bi, U,G). (22)

Definitions 1 and 2 remain the same except that F(·, . . . , ·) is R + I continuously differ-

entiable following Li, Perrigne and Vuong (2000, 2002). Note that GB|b(·|·)/gB|b(·|·) =

GB×b(·, ·)/gBb(·, ·), where GB×b(·, ·) = ∂GBb(·, ·)/∂b and gBb(·, ·) is the joint density. Let

GR be the set of exchangeable and affiliated distributions G(·, . . . , ·) with R continuously

differentiable densities such that GB×b(b, b)/gBb(b, b) is R + 1 continuously differentiable

in b ∈ [b, b] and strictly positive on (b, b]. The observed bid distribution G(·, . . . , ·) is then

rationalized if and only if Lemma 1 is satisfied with GR and ξ(·) as defined above. This

result is shown using Lemma 1 and Li, Perrigne and Vuong (2002, Proposition 1).

From this rationalization result, any G(·, . . . , ·) ∈ GR can be rationalized by a CRRA

or CARA structure with F(·, . . . , ·) ∈ FR. Hence, any structure [U, F ] ∈ UR × FR is not

identified. Moreover, parameterizing the utility function such as CRRA or CARA is not

sufficient to achieve identification. The proofs of these results follow those of Propositions

1, 2 and 4, where G(·)/[(I − 1)g(·)] is replaced by GB×b(·, ·)/gBb(·, ·) in view of (4) and

(22). With auction characteristics and affiliation and under parameterization of U(·), the

key identifying equation (5) becomes

gBb(bα(z, I), bα(z, I)|z, I) =
GB×b(bα(z, I), bα(z, I)|z, I)
λ(vα(z, I; γ) − bα(z, I); θ)

, (23)

where bα(z, I) is an α-quantile of the marginal distribution G(·|z, I) as all bidders are

symmetric. Under A1, the model U(Θ) ×FR(Z × I) is semiparametrically identified.

Estimation is performed by adapting the procedure in Section 6.1 following Li, Per-

rigne and Vuong (2002). In particular, GB×b(b, b, z, I) is estimated as the product of an

indicator function for the first term and kernels for the second and third arguments, while

gBb(b, b, z, I) is estimated using a standard kernel density estimator. In the second step,

the weighted NLLS is based on (23). Because the bid distribution and density include an

additional dimension, the optimal rate for estimating θ will be slower than in Theorem 2.

7.3 Asymmetry

Asymmetry among bidders can arise from (i) different private value distributions or (ii)

different utility functions. The latter known as heterogeneous preferences in the litera-
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ture includes different attitudes toward risk and/or different wealth levels.23 The major

difficulty with asymmetric auctions is that the equilibrium strategies are the solutions of

an intractable system of I differential equations. See Maskin and Riley (2000).

Asymmetry in Private Values

The joint distribution F(·, . . . , ·) is equal to
∏

i Fi(·) with each Fi(·) defined on [v, v]

and satisfying Definition 2. Let F I
R be the set of such distributions. Because of the

boundary conditions si(v) = v and si(v) = sj(v), bidder i’s distribution Gi(·) is defined

on [b, b] for all i = 1, . . . , I. Following Campo, Perrigne and Vuong (2003), we have

vi = bi + λ−1

(
1

Hi(bi)

)
≡ ξi(bi, U,G), where Hi(·) =

∑

j 6=i

gj(·)
Gj(·)

, (24)

for i = 1, . . . , I. Let GI
R be the set of distributions G(·, . . . , ·) such that each marginal

distribution Gi(·) satisfies Definition 3 with G(b)/g(b) replaced by 1/Hi(b) in (v). The

bid distribution G(·, . . . , ·) is then rationalized if and only if Lemma 1 is satisfied with

GI
R and ξi(·), i = 1, . . . , I as defined above. The proof is similar to that of Lemma 1.

Hence, any G(·, . . . , ·) ∈ GI
R can be rationalized by a CRRA or CARA structure with

F(·, . . . , ·) ∈ F I
R. Thus any structure [U, F ] ∈ UR × F I

R is not identified. Moreover,

parameterizing U(·) such as CRRA or CARA is not sufficient to achieve identification.

The proofs of these results follow those of Propositions 1, 2 and 4, where G(·)/[(I−1)g(·)]
is replaced by 1/Hi(·) in view of (4) and (24). With auction characteristics, bidders’

asymmetry and parameterization of U(·), the key identifying equation (5) becomes

∑

j 6=i

gj(biα(z, I)|z, I)
Gj(biα(z, I)|z, I)

=
1

λ(viα(z, I; γi) − biα(z, I); θ)
, (25)

for i = 1, . . . , I, where biα(z, I) is an α-quantile of the marginal distribution Gi(·|z, I).
Under A1, the model U(Θ) × F I

R(Z × I) is semiparametrically identified.

Comparing (6) and (25) at α = 1 shows that εi` in (10) is correlated across i since Yi`

is replaced by Ĥi` =
∑

j 6=i Yj`. Thus a GNLLS estimator is more appropriate. To simplify,

we assume that the same I bidders are in the L auctions. Let Ĥ` = (Ĥ1`, . . . , ĤI`)
′ and

M`(β) = (m(Z`; β1), . . . , m(Z`; βI))
′ with m(Z`; β) = 1/λ(v − b(Z`); θ), β = (v, θ)′. The

objective function is
∑L

`=1[Ĥ` −M`(β)]′Ω∗(Z`)[Ĥ` −M`(β)]. Following Lemma B3, the

23See also footnote 5, where U(vi − bi) is replaced by Ui(vi − bi) ≡ U(vi − bi + wi) − U(wi).
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optimal weight matrix Ω∗(Z`) is (RD`R)−1, where R is an (I × I) matrix of ones with

zeros on the diagonal and D` = diag[R−1M`(β)]. The resulting two-step estimator of θ

converges at the optimal rate, namely N (R+1)/(2R+3) .

Asymmetry in Preferences

We consider structures of the form [U1, . . . , UI , F ] ∈ U I
R ×FR with U I

R =
⊗I

i=1 UR. For

i = 1, . . . , I, we obtain

vi = bi + λ−1
i

(
1

Hi(bi)

)
≡ ξi(bi, Ui,G), (26)

where λi(·) = Ui(·)/U ′
i(·) and Hi(·) =

∑
j 6=i gj(·)/Gj(·). The boundary conditions s1(v) =

. . . = sI(v) = v and s1(v) = . . . = sI(v) give a common support [b, b] for the bid

distributions. Let GI
R be the set of distributions G(·, . . . , ·) such that each marginal

distribution Gi(·) satisfies Definition 3 with G(b)/g(b) replaced by 1/Hi(b) in (v). Because

the α-quantiles (b1α, . . . , bIα) all correspond to the same α-quantile vα, (26) evaluated at

an α-quantile for an arbitrary pair (i, j) gives

bjα + λ−1
j

(
1

Hj(bjα)

)
= biα + λ−1

i

(
1

Hi(biα)

)
. (27)

The bid distribution G(·, . . . , ·) is then rationalized if and only if (i) Lemma 1 is satisfied

with GI
R and ξi(·), i = 1, . . . , I as defined above and (ii) the compatibility condition (27) is

satisfied for any pair (i, j) and α ∈ [0, 1]. The latter reduces the set of bid distributions

that can be rationalized relative to the symmetric case and may help in identification.

Despite these conditions, the nonparametric model is still not identified.24

Proposition 6: Any structure [U1, . . . , UI , F ] ∈ UI
R ×FR is not identified.

On the other hand, if (say) U1(·) is known, the nonparametric model U I
R×FR becomes

identified as (26) for i = 1 allows to identify F (·). Thus, evaluated at the α-quantile, (26)

for i 6= 1 allows to identify λi(·) on [0,maxα(vα − biα)]. This result can be used when

bidders differ by their sizes, in which case “large” ones can be assumed to be risk neutral.

The next proposition shows that the semiparametric model UCRRA × FR is identified

without additional identifying conditions.

Proposition 7: The semiparametric model UCRRA × FR is identified.

24Parameterizing F (·) does not help as it does not make use of the compatibility conditions.
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This result first noted in Campo (2002) contrasts with Proposition 4 and relies heavily

on the presence of asymmetry in preferences as it exploits the compatibility conditions

(27). Considering a different parametric specification for Ui(·), i = 1, . . . , I introduces

nonlinearities in (27). As such, only local identification of θ = (θ1, . . . , θI) can be achieved

by using the Implicit Function Theorem.

Considering I = 2 to simplify, estimation can be conducted as follows. For some values

of α, we estimate nonparametrically the bid quantiles biα(Z`) and the functions Hi`(·),
i = 1, 2, ` = 1, . . . , L. We then exploit (27) to contruct the following nonlinear model

b̂2α(Z`) − b̂1α(Z`) = λ−1
1

(
1

Ĥ1`(b̂1α(Z`))
; θ1

)
− λ−1

2

(
1

Ĥ2`(b̂2α(Z`))
; θ2

)
+ eα` + εα`,

for any α ∈ (0, 1), similarly to (10). As in Section 6.1, a weighted NLLS can be used

for an arbitrary α. Asymptotic efficiency can be improved by integrating [b̂2α(Z`) −
b̂1α(Z`)]

2ω(α, Z`) with respect to α. Properties of this estimator are left for future research.

8 Empirical Application

This section illustrates the previous methodology on US Forest Service (USFS) timber

auctions. The USFS timber auction data have been used in several empirical studies.

Comparing revenues generated from ascending and sealed-bid auctions, Hansen (1985)

tests the revenue equivalence theorem. Using ascending auction data, Baldwin, Marshall

and Richard (1997) study collusion, while Haile (2001) analyzes bidding behavior when

there are resale opportunities after the auction. Athey and Levin (2001) study bidders’

skewed bidding on species when payments are based on actual harvested value. Bidding

diversification across species is consistent with bidders’ risk aversion.25 Athey, Levin and

Seira (2004) study entry and bidding patterns in sealed-bid and ascending auctions with

asymmetric bidders. Each of these papers focuses on a specific economic issue. While

bidders’ risk aversion is suspected in two of them, the extent of risk aversion has not been

measured. The objective of our application is to shed some light on bidders’ risk aversion.

We focus on the first-price sealed-bid auctions in 1979 for the Western half of the

US (Regions 1 to 6). The data set contains 378 auctions involving a total of 1,400 bids.

25Empirical results in Baldwin (1995) also suggest the existence of bidders’ risk aversion.
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The data contain a set of variables characterizing each timber tract varying from the

various species, the estimated volume measured in thousand board feet (mbf), the logging

costs, the tract acreage, the term of the contract in months, the month during which the

auction was held, the tract location, the reserve price and the appraisal value. The latter

is an estimated value of timber provided by the USFS taking into account its quality

and quantity. In addition, the data provide the sealed bids in dollars and the bidders’

identities. Table 1 gives some summary statistics on the total bids, the total winning

bids, the appraisal value per mbf, the tract volume and the number of bidders. The

auctioned tracts display important heterogeneity in quality and especially size. Though

several variables can explain the bid variability, the tract appraisal value seems to be the

best candidate to capture the heterogeneity in both volume and quality across tracts. In

view of our nonparametric estimators for the first and third steps, we thus let Z` be the

tract appraisal value. In addition, we consider that the reserve price is nonbinding based

on empirical evidence provided by Haile (1996).

We follow the estimation procedure of Section 6.1 with R = 1 and d = 1. The

first step consists in estimating nonparametrically the upper boundary b0(Z`, I`) and the

bid density at this upper boundary g0(b0(Z`, I`)|Z`, I`) for ` = 1, . . . , L.26 Our one-

sided kernel Φ(·) is defined on [−1, 0] with
∫ 0
−1 Φ(x)dx = 1 and

∫ 0
−1 xΦ(x)dx = 0. The

linear kernel Φ(x) = (6x + 4)1I(−1 ≤ x ≤ 0) satisfies such requirements. The second

step consists in estimating the risk aversion parameter θ. We experiment with three

different functional forms: a CRRA specification, i.e. U(x) = xθ, a CRRA specification

with common wealth w, i.e. U(x) = (x + w)θ − wθ and a CARA specification, i.e.

U(x) = [1 − exp(−θx)]/[1 − exp(−θ)].27 The CRRA specification allows us to test for

risk neutrality corresponding to θ = 1 or equivalently the relative risk aversion c = 0.

Morover, we also consider three different specifications for the upper boundary of the

private distribution, namely a constant v(Z`; γ) = γ0, a linear function v(Z`; γ) = γ0+γ1Z`

and a quadratic function v(Z`; γ) = γ0 + γ1Z` + γ2Z
2
` . This makes a total of 9 different

26Because of the important dispersion in volume (see Table 1), our empirical analysis considers the 300

auctions for which the tract appraisal value Z` is smaller than $300,000. Moroever, since the data do not

provide enough auctions for four and more bidders, we pool all the data in the estimation of the upper

boundary. Additional details on the estimation is available upon request to the authors.
27Wealth then becomes an additional parameter to be estimated.
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specifications. For every specification, m(Z`, I`; β) in (12) takes a different expression.

The optimal weights ω∗(Z`, I`) are equal to (I` − 1)(v(Z`; γ0) − b0(Z`)). This estimator

is implemented by a standard two-step procedure in which the optimal weights are first

estimated by ordinary NLLS. The standard errors are computed using Theorem 3. Table

2 provides the estimated results with standard errors in parentheses.28

For CRRA with or without wealth, a linear upper bound provides superior results

to a constant upper bound, while the quadratic term is not significant. The estimated

risk aversion parameter is about 0.30 and is stable across the linear and quadratic upper

bounds though significantly larger than for the constant upper bound. Using experimental

auction data, Goeree, Holt and Palfrey (2002) and Bajari and Hortacsu (2005) found a

larger value for relative risk aversion in the [0.50; 0.85] range. Nevertheless, risk neutrality

(θ = 1 or c = 0) is rejected in all six specifications suggesting that bidders are risk averse.

We also find that the wealth parameter is insignificant suggesting no wealth effect.29

The CARA specification provides some estimated coefficients for the upper bound quite

close to those found for the CRRA specifications except for the quadratic term, which

appears to be significant. The SSE is somewhat lower for the CARA specification though

a display of both specifications in a graph representing the pairs (Z`, ĝ(b̂(Z`)|Z`)) shows

little difference in goodness of fit.

From a policy perpective, risk aversion implies that bidders bid more aggressively

relative to the risk neutral case as they shade less their private values. In particular, a

CRRA model is equivalent of having more competition in the auctions. For instance,

with I = 4, a relative risk aversion c = 0.32 is roughly equivalent of having 5 bid-

ders in an auction with risk neutrality. Another interpretation is that bidders’ rents

decrease by 100c%. Measuring risk aversion is also important for policy recommenda-

tions. Ignoring risk aversion, i.e. θ = 1, leads to larger estimated private values thereby

shifting to the right the estimated private value distribution as shown in Figure 1 for

28Estimation was performed without imposing the restriction v̂(Z`, I`; γ̂) > b̂(Z`, I`). We observe 83

and 81 violations for the constant case for the CRRA and CRRA with wealth specifications, respectively,

and only 3 violations for the linear and quadratic cases for both specifications. The CARA specificition

does not lead to any violation.
29The gain at the auction v−b does not add directly to the firm’s wealth measured as the firm’s capital.

This could explain why wealth is not significant. A more general (unidentified) form U(w, v − b) may

better capture the wealth effect.
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Z` = Z = 36, 773 and I = 4. Moreover, though the optimal mechanism with risk averse

bidders involves some complex transfers among bidders (see Maskin and Riley (1984)

and Matthews (1987)), an optimal posted reserve price can be set to generate more rev-

enue for the seller. For a CRRA specification, the optimal reserve price p∗0 is solution of

p∗0 = v0 + [((1 − c)/(1 − cI))[F (I−1)c/(1−c)(p∗0 | z) − F (p∗0 | z)]]/f(p∗0 | z), where v0 is the

auctioned object value for the seller. For ĉ = 0.3187, I = 4, Z` = Z and v0 = Z, we find

p̂∗0 equal to $54,905. The estimate with risk neutral bidders (c = 0) gives a significantly

larger optimal reserve price at $68,418. Because risk averse bidders bid more aggressively,

the precommitment effect need not be as important thereby reducing the level of the

reserve price that generates the maximum profit for the seller.

9 Conclusion

This paper extends the structural analysis of auction data to risk averse bidders. In

particular, our methods allow researchers to estimate and test for bidders’ risk aversion

in first-price auctions within the private value paradigm. This represents an important

extension as various experiments have shown that bidders are risk averse even when the

financial stakes are small, suggesting that risk aversion is a natural component of agents’

behavior. On econometric grounds, the paper proposes a semiparametric method for es-

timating the structure of the model, namely bidders’ risk aversion parameter(s) and the

density of their private values. While previous papers have considered either fully para-

metric or nonparametric methods, this paper is the first one proposing a semiparametric

estimator that arises naturally from the identification of the theoretical auction model.

Specifically, we show that any bid distribution can be rationalized by some auction

model with risk averse bidders. This implies that the auction model with risk averse

bidders is not testable in view of bids only. Moreover, the model is not identified and

a model with constant absolute or relative risk aversion can be considered without loss

of explanatory power. We then propose minimal restrictions to achieve semiparametric

identification, namely a parameterization of the utility function and a conditional quantile

restriction on the latent private value distribution. We show that our method extends to

more general auction models such as affiliated private values and asymmetric bidders. Our

semiparametric estimation method involves nonparametric boundary estimation, kernel
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estimators and weighted nonlinear least squares. We show that our estimator converges at

the optimal rate, which is smaller than
√
N and independent of the number of exogenous

variables thereby avoiding the curse of dimensionality. An illustration of the method is

proposed on USFS auction data showing bidders’ risk aversion.

Many extensions can be entertained based on our methodology. A first interesting

extension relates to the practice of random reserve prices, which may dominate posted

reserve prices by accentuating overbidding under risk aversion. Perrigne (2003) extends

the present method to random reserve prices and assesses empirically the gain for the

seller of keeping the reserve price secret. Second, Campo (2005) considers an auction

model with heterogeneous bidders for analyzing contruction procurements and shows that

bidders’ risk aversion decreases with bidders’ experience. A third extension is conducted

by Lu (2002) relying on Eso and White (2004) model with stochastic private values due ex

ante uncertainties about the value of the auctioned object. Identification then becomes

more involved. Lastly, given that little is known on bidders’ utility function, Guerre,

Perrigne and Vuong (2005) exploit some exlcusion restrictions to achieve nonparametric

identification of the utility function.
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Appendix A

Appendix A gathers proofs of Lemma 1 and Propositions 1, 2, 4–7.

Proof of Lemma 1: First, we prove that (i) and (ii) are necessary. Because bi = s(vi, U, F, I)

and the vis are i.i.d., the bis are also i.i.d. The fact that G(·) ∈ GR follows from applying Lemma 2

to the case with no conditioning variables (Z, I). To prove that (ii) is also necessary, consider (4),

where λ(·) ≡ U(·)/U ′(·). Thus λ(·) is defined from IR+ to IR+ because λ(0) = limx↓0 λ(x) = 0, as

noted after Definition 1. As U(·) admits R+2 continuous derivatives on (0,+∞) with U ′(·) > 0,

and limx↓0 λ
(r) is finite for r = 1, . . . , R+1, then λ(·) has R+1 continuous derivatives on [0,+∞).

As λ′(·) = 1 − λ(·)U ′′(·)/U ′(·), we have λ′(·) ≥ 1 because λ(·) ≥ 0, U ′(·) > 0 and U ′′(·) ≤ 0. It

remains to show that ξ′(·) > 0. The equilibrium strategy must solve the differential equation

(2). As (3) follows from (2), s(·) must satisfy ξ[s(v), U,G, I] = v for all v ∈ [v, v]. We then

obtain ξ(b, U,G, I) = s−1(b, U, F, I). This implies ξ′(·) = [s−1(·)]′ > 0 using Theorem 1.

Second, we show that (i) and (ii) are together sufficient. First, we construct a pair [U,F ] ∈
UR × FR. Let U(·) be such that λ(·) = U(·)/U ′(·) or U ′(·)/U(·) = 1/λ(·). Integrating with

the normalization U(1) = 1 gives U(x) = exp
∫ x
1 1/λ(t)dt. We verify that U(·) ∈ UR. Because

λ(·) admits R + 1 continuous derivatives on [0,+∞), then Definition 1-(iii) is clearly satisfied.

Moreover, in the neighborhood of zero, λ(t) ∼ λ′(0)t with 1 ≤ λ′(0) < ∞. Thus
∫ 1
x 1/λ(t)dt

diverges to infinity, which implies that U(x) tends to zero as x ↓ 0. Define U(0) = 0 so

that U(·) is continuous on [0,+∞). Because U ′(x) = exp
∫ x
1 1/λ(t)dt/λ(x), where λ(·) > 0 on

(0,+∞), we have U ′(·) > 0 on (0,+∞). The second-order derivative gives U ′′(x) = [−λ′(x) +

1] exp
∫ x
1 1/λ(t)dt/λ2(x). Since λ′(x) ≥ 1, U ′′(·) ≤ 0 on (0,+∞). It remains to show that U(·)

admits R + 2 continuous derivatives on (0,+∞). By assumption, λ(·) has R + 1 continuous

derivatives on [0,+∞). It follows that U(·) admits R+ 2 continuous derivatives on (0,+∞).

Let F (·) be the distribution of X = b + λ−1[G(b)/(I − 1)g(b)], where b ∼ G(·). We verify

that F (·) ∈ FR. We have F (x) = Pr(X ≤ x) = Pr[ξ(b) ≤ x] = Pr[b ≤ ξ−1(x)] = G[ξ−1(x)],

because ξ′(·) > 0 by assumption. This implies F (·) = G[ξ−1(·)] on [v, v], where v ≡ ξ(b) = b and

v ≡ ξ(b) <∞ by continuity of ξ(·). Because ξ(·) and G(·) are strictly increasing, F (·) is strictly

increasing on its support [v, v]. Moreover, ξ(·) is R+1 continuously differentiable on [b, b]. This

follows from the definition of ξ(·), the R + 1 continuous differentiability of λ−1(·) on [0,+∞),

and the R + 1 continuous differentiability of G(·)/g(·) on [b, b], which follows from Definition

3-(iv,v). Thus F (·) = G[ξ−1(·)] admits R + 1 continuous derivatives on [v, v] because G(·) has

R + 1 continuous derivatives on [b, b]. It remains to show that f(·) > 0 on [v, v]. This follows

from f(·) = g[ξ−1(·)]/ξ′[ξ−1(·)], where g(·) > 0 from Definition 3 and ξ′(·) is finite on [b, b].
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Lastly, we show that the pair [U,F ] rationalizes G(·), i.e. that G(·) = F [s−1(·, U, F, I)]
on [b, b], where s(·, U, F, I) solves (2) with the boundary condition s(v, U, F, I) = v. By con-

struction of F (·), G(·) = F [ξ(·)]. Thus, it suffices to show that ξ−1(·) solves (2) with the

boundary condition ξ−1(v) = v. The boundary condition is straightforward as ξ(b) = b = v.

By construction of F (·), f(·)/F (·) = [ξ−1(·)]′g[ξ−1(·)]/G[ξ−1(·)]. Thus ξ−1(·) solves (2) if

1 = {(I − 1)g[ξ−1(v)]λ[v − ξ−1(v)]}/G[ξ−1(v)] for all v ∈ [v, v]. Making the change of vari-

able v = ξ(b) and noting that ξ(b) − b = λ−1[G(b)/(I − 1)g(b)] from the definition of ξ(·), it

follows that ξ−1(·) solves (2) with boundary condition ξ−1(v) = v.

Proof of Proposition 1: (i) Consider a bid distribution G(·) ∈ GR. We show that there exists

a structure [U,F ], where U(x) = x1−c, 0 ≤ c < 1 and F ∈ FR, that rationalizes G(·). Note that

λ(x) = x/(1 − c) with λ(0) = 0 and λ′(·) ≥ 1. From Lemma 1, it suffices to show that there

exists a value c ∈ [0, 1) such that ξ(b, c,G) = b+[(1− c)G(b)]/[(I −1)g(b)] has a strictly positive

derivative on [b, b]. Differentiating gives [G(b)/g(b)]′ > −(I − 1)/(1 − c) for all b ∈ [b, b], i.e.

inf
b∈[b,b]

[
G(b)
g(b)

]′
> −I − 1

1 − c
. (A.1)

The LHS is finite becauseG(·)/g(·) isR+1 continuously differentiable on [b, b]. If infb[G(b)/g(b)]′ ≥
0, then any value c ∈ (0, 1) satisfies (A.1). If infb[G(b)/g(b)]′ < 0, (A.1) can be written as

c > 1 − (I − 1)/(− infb [G(b)/g(b)]′), where the RHS is less than one. Thus, we can always find

a c ∈ (0, 1) satisfying (A.1) and hence a CRRA model that rationalizes G(·).
(ii) The proof for the CARA case is similar. Consider U ∈ UCARA

R . This gives U(x) =

(1− e−ax)/(1− e−a) with a > 0. Hence λ(x) = (eax − 1)/a and λ−1(x) = (1/a) log(1+ ax). The

inverse bidding strategy is ξ(b) = b + (1/a) log {1 + [aG(b)/(I − 1)g(b)]}. We show that there

exists a > 0 such that ξ′(b) > 0 on [b, b]. Differentiating gives

a
G(b)
g(b)

> −
[
(I − 1) +

(
G(b)
g(b)

)′]
,∀b ∈ [b, b].

Note that limb↓b[G(b)/g(b)]′ = limb↓b 1−G(b)g′(b)/g2(b) = 1 because R ≥ 1 and g(b) > 0. Hence,

the preceding inequality holds at b for any a > 0. Thus, it becomes

a > sup
b∈(b,b]

− g(b)
G(b)

[
(I − 1) +

(
G(b)
g(b)

)′]
. (A.2)

This is satisfied for an infinity of values for a > 0 provided the supremum is not +∞. We

know that −[g(b)/G(b)]{I − 1+ [G(b)/g(b)]′} is R continuously differentiable on (b, b] and hence

continuous on (b, b] because R ≥ 1. Moreover, limb↓b −[g(b)/G(b)]{I − 1 + [G(b)/g(b)]′} = −∞
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because g(b)/G(b) tends to +∞ and [G(b)/g(b)]′ tends to 1. Thus, we can always find an a > 0

satisfying (A.2) and hence a CARA model that rationalizes G(·).

Proof of Proposition 2: Let [U,F ] ∈ UR ×FR with bid distribution G(·) ∈ GR by Lemma 1.

Let [Ũ , F̃ ] be such that Ũ(·) = [U(·/δ)/U(1/δ)]δ , with δ ∈ (0, 1) and F̃ (·) be the distribution of

ξ̃(b, Ũ , G, I) = b+ λ̃−1
(

1
I − 1

G(b)
g(b)

)
= b+ δλ−1

(
1

I − 1
G(b)
g(b)

)
= (1 − δ)b+ δξ(b, U,G, I)

where b ∼ G(·). It is easy to check that [Ũ , F̃ ] ∈ UR ×FR. Because ξ̃(·) is the weighted sum of

two strictly increasing functions in b, then ξ̃(·) is strictly increasing. Hence, from Lemma 1 the

structures [U,F ] and [Ũ , F̃ ] are observationally equivalent, and [U,F ] is not identified.

Proof of Proposition 4: We first consider the CRRA case. Let [U,F ] ∈ UCRRA × FR with

parameter c ∈ [0, 1) generating a bid distribution G(·) ∈ GR. The proof of Proposition 1 shows

that there exists a CRRA utility function Ũ(·) with 0 ≤ c < c̃ < 1 and a distribution F̃ (·) ∈ FR

leading to the same G(·). Thus the CRRA model is not identified. We can use a similar argument

to show that the CARA model is not identified from the proof of Proposition 1.

Proof of Proposition 5: Let [U,F ] satisfy Assumption A1 with parameters (θ, γ) and G(·|·, ·)
be the corresponding equilibrium bid distribution given (Z, I). Suppose that there exists another

structure [Ũ , F̃ ] satisfying A1 with parameters (θ̃, γ̃) and leading to the same G(·|·, ·). We first

show that (θ, γ) is identified, i.e (θ, γ) = (θ̃, γ̃). Writing (5) for each structure gives

1
I − 1

α

g[bα(z, I)|z, I]
= λ[vα(z, I; γ) − bα(z, I); θ] = λ[vα(z, I; γ̃) − bα(z, I); θ̃],

for every (z, I) ∈ Z × I. Hence A1-(iv) implies that (θ̃, γ̃) = (θ, γ). From A1-(i), Ũ(·) =

U(·; θ̃) = U(·; θ) = U(·), which establishes the identification of U(·). Moreover, from (4), we have

v = b+ λ−1 [G(b|z, I)/((I − 1)g(b|z, I)); θ] = ṽ, for every b ∈ [b(z, I), b(z, I)] and (z, I) ∈ Z × I.

This shows that F̃ (·|·, ·) = F (·|·, ·), i.e. that the latter is identified.

Proof of Proposition 6: Let [U1, . . . , UI , F ] ∈ UI
R×FR, which thus generates [G1, . . . , GI ] ∈ GI

R

that satisfies the compatibility condition (27). We show that there exists another structure

[Ũ1, . . . , ŨI , F̃ ] ∈ UI
R ×FR rationalizing [G1, . . . , GI ]. The proof is in four steps.

Step 1: Construction of [Ũ1, . . . , ŨI , F̃ ]. Let Ũ1(·) = [U1(·/δ)/U1(1/δ)]δ with δ ∈ (0, 1). Thus,

λ̃1(·) = λ1(·/δ) and λ̃−1
1 (·) = δλ−1

1 (·). For i = 2, . . . , I, let Ũi(x) = exp
[∫ x

1 1/λ̃i(t)dt
]

so that

λ̃i(·) = Ũi(·)/Ũ ′
i (·), where λ̃i(·) is such that λ̃−1

i [1/Hi(biα)] = λ̃−1
1 [1/H1(b1α)] + b1α − biα, for

all α ∈ [0, 1]. The latter well-defines λ̃−1
i (·) because 1/Hi(biα) strictly increases as α increases

given H ′
i(·) < 0. Moreover, λ̃i(·) is strictly increasing as shown in Step 3. Note that the
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compatibility condition (27) is satisfied by construction. We then let F̃ (·) be the distribution of

ṽi ≡ bi + λ̃−1
i [1/Hi(bi)] ≡ ξ̃i(bi) for an arbitrary i, where bi ∼ Gi(·). Using λ̃−1

1 (·) = δλ−1
1 (·), we

obtain λ̃−1
i [1/Hi(biα)] = δλ−1

1 [1/H1(b1α)] + b1α − biα. Thus, (27) with j = 1 gives

λ̃−1
i

(
1

Hi(biα)

)
= δλ−1

i

(
1

Hi(biα)

)
+ (1 − δ)(b1α − biα). (A.3)

Equivalently, λ̃−1
i [1/Hi(biα)] = λ−1

i (1/Hi(biα)) − (1 − δ)λ−1
1 [1/H1(b1α)]. In particular, since

λ−1
i (·) is bidder’s i shading, the shading under [Ũ1, . . . , ŨI , F̃ ] is smaller than under [U1, . . . , UI , F ],

i.e. bidders tend to bid more aggressively under the former than under the latter.

Step 2: λ̃i(0) = 0 and ξ̃′i(·) > 0 on [b, b]. Because [U1, . . . , UI , F ] ∈ UI
R × FR so that

[G1, . . . , GI ] ∈ GI
R, we have λ−1

i (0) = 0 and limb↓b 1/Hi(b) = 0. Thus, (A.3) with the bound-

ary conditions b1 = . . . = bI ≡ b = v imply λ̃−1
i (0) = 0 and hence λ̃i(0) = 0. Regarding

ξ̃′i(·) > 0, we note that ξ̃i(biα) = (1 − δ)b1α + δξi(biα) from (A.3) and (26). Noting that

b1α = G−1
1 [Gi(biα)] ≡ Bi(biα) and letting biα = b, we obtain ξ̃′i(b) = (1 − δ)B′

i(b) + δξ′i(b),

where B′
i(b) = gi(b)/g1[B(b)]. Hence, ξ̃′i(b) > 0 since B′

i(b) > 0 and ξ′i(b) > 0.

Step 3: λ̃′i(·) ≥ 1. From (A.3) and (26), λ̃−1
i [1/Hi(biα)] = δξi(biα) + (1 − δ)b1α − biα, i.e.

1/Hi(biα) = λ̃i[δξi(biα)+(1−δ)b1α−biα]. From the structure [U1, . . . , UI , F ], we have 1/Hi(biα) =

λi[ξi(biα)−biα]. Thus, λi[ξi(biα)−biα] = λ̃i[δξi(biα)+(1−δ)b1α−biα]. Differentiating with respect

to b = biα and noting that b1α = G−1
1 [Gi(biα)] ≡ Bi(biα) gives

λ̃′i(∗∗) =
ξ′i(b) − 1

δξ′i(b) + (1 − δ)B′
i(b) − 1

λ′i(∗) ≡ Ri(b)λ′i(∗), (A.4)

where the different arguments of λ′i(·) and λ̃′i(·) are indicated by * and **, respectively. Thus,

it suffices to show that Ri(·) ≥ 1 since λ′i(·) ≥ 1. We note that ξ1(b1α) = ξi(biα) = vα for all

α ∈ [0, 1] from the compatibility conditions. Using b1α = Bi(biα), this gives ξ1[Bi(b)] = ξi(b) for

all b ∈ [b, b]. Differentiating gives ξ′1[Bi(b)]B′
i(b) = ξ′i(b), i.e. B′

i(b) = ξ′i(b)/ξ
′
1[Bi(b)]. Hence,

Ri(b) =
ξ′i(b) − 1

δξ′i(b) − 1 + (1 − δ) ξ′i(b)
ξ′1 [Bi(b)]

= 1 +
(1 − δ)ξ′i(b){ξ′1[Bi(b)] − 1}

δξ′i(b){ξ′1[Bi(b)] − 1} − {ξ′1[Bi(b)] − ξ′i(b)}
, (A.5)

for b ∈ [b, b]. Note that ξ′i(·) > 1 on (b, b] for every i = 1, . . . , I since differentiating (26) gives

ξ′i(b) = 1 − λ−1′

i [1/Hi(b)][H ′
i(b)/H

2
i (b)], where λ−1′

i (·) > 0 and H ′
i(·) < 0 by assumption. Hence,

ξ′i(·) ≥ 1 on [b, b] by continuity. Since 1 − δ > 0 and ξ′i(·) > 0, it suffices to show that the

denominator Di(b) (say) in the RHS is strictly positive for all b ∈ [b, b] and some δ ∈ [δ∗, 1].

To study the sign of Di(·) on [b, b], we note that

gj(b)
Gj(b)

=
gj(b) + o(1)

gj(b)(b− b) + o(b− b)
=

1
b− b

gj(b) + o(1)
gj(b) + o(1)

=
1

b− b
(1 + o(1)).
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Thus, a Taylor expansion of 1 = λi[ξi(b) − b]
∑

j 6=i[gj(b)/Gj(b)] from (26) gives

1 =
{
λ′i(0)[ξ

′
i(b) − 1](b − b) + o(b− b)

} I − 1
b− b

(1 + o(1)) =
{
λ′i(0)[ξ

′
i(b) − 1](I − 1)

}
+ o(1).

Hence, ξ′i(b) = 1 + {1/[(I − 1)λ′i(0)]} > 1 as λ′i(·) ≥ 1. Thus, because ξ′i(·) > 1 on [b, b] , then

Di(·) > 0 on [b, b] if and only if δ > δ∗ ≡ maxb∈[b,b] δ(b), where δ(·) is continuous on [b, b] with

δ(b) ≡ ξ′1[Bi(b)] − ξ′i(b)
ξ′i(b){ξ′1[Bi(b)] − 1} =

1
ξ′i(b)

[
1 − ξ′i(b) − 1

ξ′1[Bi(b)] − 1

]
.

It remains to show that δ(·) < 1 on [b, b] so that δ∗ < 1. Clearly, δ(·) < 1 on (b, b] as ξ′i(·) > 1

on (b, b]. Moreover, at b = b, we have δ(b) = [1/ξ′i(b)]{1 − [λ′i(0)/λ
′
1(0)]} < 1.

Step 4: [Ũ1, . . . , ŨI , F̃ ] ∈ UI
R × FR. From the previous steps and the rationalization result

given after (27), it follows that [Ũ1, . . . , ŨI , F ] rationalizes [G1, . . . , GI ]. It remains to show that

[Ũ1, . . . , ŨI , F̃ ] ∈ UI
R × FR. From the proof of Lemma 1, it sufffices to show that λ̃i(·) is R + 1

continuously differentiable on [0,∞) for i = 1, . . . , I. This follows from (A.4)–(A.5) and the

R+ 1 continuous differentiablity of λi(·) and ξi(·) as [G1, . . . , GI ] ∈ GI
R.

Proof of Proposition 7: Consider any pair (i, j) of individuals such that ci 6= cj . The

compatibility condition (27) for a CRRA model is

bjα − biα = (1 − ci)/Hi(biα) − (1 − cj)/Hj(bjα) for all α ∈ [0, 1]. (A.6)

We first show that there exists (α, α̃) ∈ [0, 1]2 such that Hi(biα)/Hj(bjα) 6= Hi(biα̃)/Hj(bjα̃).

Suppose not, then Hi(biα)/Hj(bjα) is a constant. Because (A.6) at b gives Hi(b)/Hj(b) =

(1 − ci)/(1 − cj), then Hi(biα)/Hj(bjα) = (1 − ci)/(1 − cj) for all α ∈ [0, 1]. Using this in

(A.6) gives biα = bjα, which implies Gi(·) = Gj(·) and hence Hi(·) = Hj(·) because Hi(·) =

[gj(·)/Gj(·)] +
∑

k 6=i,j[gk(·)/Gk(·)] and Hj(·) = [gi(·)/Gi(·)] +
∑

k 6=i,j[gk(·)/Gk(·)]. From (A.6)

we then have ci = cj , which contradicts ci 6= cj . Thus, there exists (α, α̃) ∈ [0, 1]2 such that

Hi(biα)/Hj(bjα) 6= Hi(biα̃)/Hj(bjα̃). This guarantees that (A.6) written at α and α̃ has a unique

solution (ci, cj). Thus (c1, . . . , cI) are identified. The identification of F (·) follows from (26). A

similar result can be found in Campo (2005) who assumes that Hi(biα)/Hj(bjα) is not constant.

Appendix B

Appendix B proves Theorem 2 and Theorem 3. The proofs use some lemmas, which are

proved in Appendix C. Hereafter, let ξ(·; z, I) = s−1(·; z, I) and FL be the σ-field generated by
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{(Z`, I`), 1 ≤ ` ≤ L}. Moreover, let a � bmean that a/b→ c with 0 < c <∞, and for u = (ui`) ∈
IRN , define the norms ‖u‖p =

(∑L
`=1

∑I`
i=1 |ui`|p

)1/p
and ‖u‖∞ = max1≤`≤L max1≤i≤I`

|ui`|.

Proof of Theorem 2: The proof is in three steps.

Step 1: Smoothness of m(z, I;β). We have

Lemma B1: Let (U0, F0) satisfy A2-(i,ii) for some β0 = (θ′0, v0)′ ∈ Θo × (0,∞) and I finite.

Then, for every I ∈ I, the function m(·, I; ·) defined in (7) is R + 1 continuously differentiable

on Z ×B, where B = Θ × (sup(z,I)∈Z×I b0(z, I),+∞) with sup(z,I)∈Z×I b0(z, I) < v0.

Step 2: Perturbated Model. Let t > 0 and ψ(·) : IR− → IR be an infinitely differentiable function

on IR− with support [−1, 0], such that ψ(0) = 1,
∫
ψ(x)dx = 0. Let 1Ip = (1, . . . , 1)′ ∈ IRp. For

a fixed constant κ > 0, consider the following perturbations of θ0 and g0(b|z, I), where I ∈ I,

βN = (θ′N , v0)′ = (θ′0 + 2t1I′p/ρN , v0)′ = β0 + (2t1I′p/ρN , 0)′,

gN (b|z, I) = g0(b|z, I) + πN (z, I)ψ
[
κρ

1/(R+1)
N

(
b− b0(z, I)

)]
,

πN (z, I) = m (z, I;βN ) −m(z, I;β0) =
∂m(z, I;β0)

∂β
(βN − β0) + o(‖βN − β0‖) = O(1/ρN ).

Without loss, we can assume that {βN ;N = 1, 2, . . .} is in a compact subset Bc ⊂ B as θ0 ∈ Θo

and v0 > sup(z,I)∈Z×I b0(z, I). Thus, the reminder term is uniform in z because ∂m(·, I; ·)/∂β
is continuous on Z × B by Lemma B1, and hence uniformly continuous on Z × Bc.

From Lemma 2-(iii) it follows that gN (·|z, I) is a conditional density with support [b0, b0(z, I)]

forN large enough. Moreover, it is crucial to verify that such a density corresponds to a structure

[U(·; θN ), FN ] in our semiparametric model.

Lemma B2: Let (U0, F0) satisfy A2-(i,ii) for some β0 = (θ0, v0) ∈ Θo × (0,∞), f0 ∈ F∗
R(M)

and I finite. For κ > 0 small enough and N large enough, we have

(i) For every (z, I) ∈ Z × I, GN (·|z, I) is rationalized by the IPV auction structure with risk

aversion [U(·; θN ), FN (·|z, I)], where FN (·|·, I) ∈ F∗
R with support [v0, v0],

(ii) The conditional distribution function FN (·|·, ·) is such that (βN , fN ) ∈ Vε(β0, f0).

Step 3: Lower Bound. Using the triangular inequality we have for any estimator β̃

PrβN ,fN

(
‖ρN (β̃ − βN )‖∞ ≥ t

)
≥ PrβN ,fN

(
‖ρN (βN − β0)‖∞ − ‖ρN (β̃ − β0‖∞ ≥ t

)

≥ PrβN ,fN

(
‖ρN (β̃ − β0)‖∞ < t

)

since ‖ρN (βN − β0)‖∞ = 2t. Therefore, because (β0, f0) and (βN , fN ) are in Vε(f0, β0) for L

large enough by Lemma B2-(ii), we have

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN (β̃ − β)‖∞ ≥ t

)
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≥ 1
2

[
Prβ0,f0

(
‖ρN (β̃−β0)‖∞≥ t

)
+ PrβN ,fN

(
‖ρN (β̃−βN )‖∞≥ t

)]

≥ 1
2
E
[
Prβ0,f0

(
‖ρN (β̃ − β0)‖∞ ≥ t | FL

)
+ PrβN ,fN

(
‖ρN (β̃ − β0)‖∞ < t | FL

)]
(B.1)

Let Pre(FL) denote the term within brackets, and Prj be the joint probability of the Bi`s given

FL under gj(·|·, ·), j = 0, N . Standard relations between the distance in variation, the L1 norm

and the Hellinger distance (see e.g. Bickel, Klaassen, Ritov and Wellner (1993, p.464)) yield

Pre(FL) = 1 −
(
Pr0(‖ρN (β̃ − β0)‖∞ < t) − PrN (‖ρN (β̃ − β0)‖∞ < t)

)

≥ 1 − sup
A

|Pr0(A) − PrN (A)| = 1 − 1
2

∫
|dPr0 − dPrN |

≥ 1 −
[∫ (√

dPr0 −
√
dPrN

)2
]1/2

= 1 −
√

2
(

1 −
∫ √

dPr0dPrN

)1/2

= 1 −
√

2


1 −

L∏

`=1

I∏̀

i=1

∫ b0(Z`,I`)

b0

√
g0(bi`|Z`, I`)gN (bi`|Z`, I`)dbi`




1/2

. (B.2)

But, because gj(·|·, ·), j = 0, N , are bounded away from zero and sup(z,I)∈Z×I πN (z, I) =

O(1/ρN ), we obtain from the definition of gN (·|·, ·) and a Taylor expansion
∫ b0(Z`,I`)

b0

√
g0(b|Z`, I`)gN (b|Z`, I`)db

=
∫ b0(Z`,I`)

b0

g0(b|Z`, I`)

√
1 +

πN (Z`, I`)
g0(b|Z`, I`)

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))
db

=
∫ b0(Z`,I`)

b0

g0(b|Z`, I`)

[
1 +

πN (Z`, I`)
2g0(b|Z`, I`)

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))

− π2
N (Z`, I`)

8g2
0(b|Z`, I`)

ψ2
(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))]
db+O

(
1
ρ3

N

)

= 1 +
πN (Z`, I`)

2

∫ b0(Z`,I`)

b0

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))
db

− π2
N (Z`, I`)

8κρ
1

R+1

N

∫ 0

−1

ψ2(x)

g0

(
b0(Z`, I`) + ρ

− 1
R+1

N x/κ

)dx+ O
(
ρ−3

N

)

= 1 + 0 +O

(
ρ
− 1

R+1
−2

N

)
= 1 +O

(
ρ
− 2R+3

R+1

N

)
,

uniformly in `, since
∫
ψ(x)dx = 0. Consequently, since Nρ−(2R+3)/(R+1)

N → 0, we have
L∏

`=1

I∏̀

i=1

∫ b0(Z`,I`)

b0

√
g0(bi`|Z`, I`)gN (bi`|Z`, I`)dbi`

=
[
1 +O

(
ρ
− 2R+3

R+1

N

)]N
= exp

[
N log

(
1 +O

(
ρ
−(2R+3)/(R+1)
N

))]
= 1 + o(1).
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Hence, (B.2) implies that Pre(FL) ≥ 1 − o(1). Thus, (B.1) yields

inf
β̃

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN (β̃ − β)‖∞ ≥ t

)
≥ 1

2
[1 − o(1)] =

1
2
− o(1).

The desired result follows by taking limits as N → ∞ and then ε→ 0.

Proof of Theorem 3: The proof is in three steps. Hereafter, the compactness of Z × I is

heavily exploited, while all limits are taken as N → ∞.

Step 1: Some Lemmas. The first lemma studies the bias and error terms of (10).

Lemma B3: Let A2–A3 and A4-(iii,iv) hold.

(i) The variables Yi` (or εi`), 1 ≤ i ≤ I`, 1 ≤ ` ≤ L are independent given FL,

(ii) Uniformly in (i, `),

E[Yi`|FL] = g0(b0(Z`, I`)|Z`, I`) +
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
,

ei` =
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
,

(iii) Uniformly in (i, `)

Var[εi`|FL] =
g0(b0(Z`, I`)|Z`, I`) + o(1)

hN

∫
Φ2(x)dx =

m(Z`, I`;β0) + o(1)
hN

∫
Φ2(x)dx,

max
1≤`≤L,1≤i≤I`

|εi`| ≤
2 supx∈IR |Φ(x)|

hN
.

The second lemma is a Central Limit Theorem, which is useful for weighted averages of εi`.

Lemma B4: Let A2–A3 and A4-(iii,iv) hold. For any u ∈ IRN \ {0} that is FL-measurable

with ‖u‖∞/(‖u‖2

√
hN ) = oP (1), then

∑L
`=1

∑I`
i=1 ui`εi`/Var1/2[

∑L
`=1

∑I`
i=1 ui`εi`|FL] d→ N (0, 1)

conditionally on FL and thus unconditionally.

The third and fourth lemmas control the estimation errors |Ŷi` − Yi`| and |m̂(·, ·;β) −m(·, ·;β)|
arising from estimating the upper boundary b0(·, ·).

Lemma B5: Let A2–A3 and A4-(iii,iv,v) hold. For any u ∈ IRN that is FL-measurable,
∣∣∣∣∣∣

L∑

`=1

I∑̀

i=1

ui`

(
Ŷi` − Yi`

)
∣∣∣∣∣∣

≤
L∑

`=1

I∑̀

i=1

|ui`|
∣∣∣Ŷi` − Yi`

∣∣∣ = OP

[
max

(
‖u‖1

aN

hN
, ‖u‖2

√
aN

hN

)]
,

L∑

`=1

I∑̀

i=1

|ui`|
(
Ŷi` − Yi`

)2
= ‖u‖1OP

(
aN

h2
N

)
.
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Lemma B6: Let A2-(i,ii), A3-(i) and A4-(i,v) hold. Then, supβ∈Bδ
max1≤`≤L |m̂(Z`, I`;β)−

m(Z`, I`;β)| and supβ∈Bδ
max1≤`≤L ‖∂m̂(Z`, I`;β)/∂β − ∂m(Z`, I`;β)/∂β‖∞ are both OP (aN ).

The next two lemmas study the properties of the limit and convergence of the approximate

objective function QN (·) defined in (19).

Lemma B7: Let A2–A3 and A4-(i,ii) hold. Let Q(β) = E
[
Iω(Z, I) (m(Z, I;β) −m(Z, I;β0))

2
]
.

Then, for any ε > 0, there exists Cε > 0 such that infβ∈Bδ ;‖β−β0‖∞≥εQ(β) > Cε. Moreover, the

matrix A(β) and B(β) defined in (14) and (15) are of full rank in a neighborhood of β0.

Lemma B8: Let A2–A3 and A4-(i,ii) hold. Then, supβ∈Bδ

∣∣∣(1/L)QN (β) −Q(β)
∣∣∣ = OP

(
1/
√
L
)

= oP (1). Moreover, for any β ∈ Bδ

AN (β)
N

=A(β) +OP (1/
√
N),

BN (β)
N

=B(β) +OP (1/
√
N),

bN (β, g0)
N

=b(β, g0)+OP (1/
√
N),

where A(β), B(β), AN (β), BN (β) and b(β, g0) are defined in (14)–(18), and

bN (β, g0) =
∫
xR+1Φ(x)dx
(R+ 1)!

L∑

`=1

I`ω(Z`, I`)
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∂m(Z`, I`;β)
∂β

.

The last lemma deals with the following processes

WN (β) =
√
hN√
N

L∑

`=1

I∑̀

i=1

ω(Z`, I`)εi`m(Z`, I`;β),

W
(1)
N (β) =

√
hN√
N

L∑

`=1

I∑̀

i=1

ω(Z`, I`)εi`
(
∂m(Z`, I`;β)

∂β
− ∂m(Z`, I`;β0)

∂β

)
.

Lemma B9: Let A2–A3 and A4-(i,ii,iii,iv) hold. If β̃N = β0 + oP (1), then supβ∈Bδ
|WN (β)| =

OP (1) and W (1)
N (β̃N ) = oP (1).

Step 2: Consistency. Note that |max1≤`≤L b̂N (Z`, I`) − sup(z,I)∈Z×I b0(z, I)| < δ/4 with prob-

ability approaching one by A4-(v) and A3-(i), where the latter implies that {Z`, ` = 1, 2, . . .}
is a.s. dense in Z by the Glivenko-Cantelli Theorem. Thus, sup(z,I)∈Z×I b0(z, I) + δ/4 <

max1≤`≤L b̂N (Z`, I`) +δ/2 < sup(z,I)∈Z×I b0(z, I)+3δ/4 < v0 < vsup with probability approach-

ing one, using A4-(i). That is, v0 ∈ BN ⊂ Bδ/4 with probability approaching one.
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Now, (12), (13) and the triangular inequality give

|Q̂1/2
N (β) −Q

1/2
N (β)|

=

∣∣∣∣∣∣∣




L∑

`=1

I∑̀

i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`;β)

)2




1/2

−




L∑

`=1

I∑̀

i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β))2



1/2
∣∣∣∣∣∣∣

≤




L∑

`=1

I∑̀

i=1

ω(Z`, I`)
(
Ŷi` − Yi` +m(Z`, I`;β) − m̂(Z`, I`;β)

)2




1/2

≤




L∑

`=1

I∑̀

i=1

ω(Z`, I`)
(
Ŷi` − Yi`

)2




1/2

+




L∑

`=1

I∑̀

i=1

ω(Z`, I`) (m(Z`, I`;β) − m̂(Z`, I`;β))2



1/2

.

Thus, Lemmas B5 and B6 together with A4-(ii) yield

sup
β∈Bδ/4

|Q̂1/2
N (β) −Q

1/2
N (β)| =

√
NOP

(√
aN

hN

)
+

√
NOP (aN ) =

√
NOP

(√
aN

hN

)
, (B.3)

since aN = o(
√
aN/hN ) by A4-(iv). On the other hand, (10), (12) and the inequality (x1 +x2 +

x3)2 ≤ 3(x2
1 + x2

2 + x2
3) yield

QN (β) ≤ 3
L∑

`=1

I∑̀

i=1

ω(Z`, I`)
[
(m(Z`, I`;β) −m(Z`, I`;β0))

2 + e2i` + ε2i`

]

= OP (N) +OP

(
Nh

2(R+1)
N

)
+OP (N/hN ) = OP (N/hN ), (B.4)

uniformly in β ∈ Bδ/4, where the first equality follows from A4-(ii,iii), Lemmas 2-(i,iv), B1, B3-

(ii) and
∑

`

∑
i ε

2
i` = Op(1/hN ), which follows from Markov inequality and E[ε2i`] = E{Var[ε2i`|FL]}

= O(1/hN ) using E[εi`|FL] = 0 and Lemma B3-(iii). The second equality then follows from

A4-(iv). Thus, combining (B.3) and (B.4) gives

sup
β∈Bδ/4

|Q̂N (β) −QN (β)| = sup
β∈Bδ/4

∣∣∣
(
Q̂

1/2
N (β) −Q

1/2
N (β)

) (
2Q̂1/2

N (β) +Q
1/2
N (β) − Q̂

1/2
N (β)

)∣∣∣

≤ 2 sup
β∈Bδ/4

Q
1/2
N (β) sup

β∈Bδ/4

|Q̂1/2
N (β) −Q

1/2
N (β)| + sup

β∈Bδ/4

|Q̂1/2
N (β) −Q

1/2
N (β)|2

= NOP

(√
aN

h3
N

)
+NOP

(
aN

h2
N

)
= oP (N), (B.5)

since aN = o(h3
N ) by A4-(v).

Next, consider QN (β) −QN (β0) −QN (β), where QN (β) is defined by (19). We have

QN (β) −QN (β0) = QN (β) − 2
L∑

`=1

I∑̀

i=1

ω(Z`, I`)(ei` + εi`) (m(Z`, I`;β) −m(Z`, I`;β0))
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using (10) and (12). Hence,

sup
β∈Bδ/4

|QN (β) −QN (β0) −QN (β)| = OP (NhR+1
N ) +OP

(√
N/hN

)
= oP (N), (B.6)

using Lemmas 2-(i,iv), B1, B3-(ii), B9 and A4-(iv). Thus,

sup
β∈Bδ/4

∣∣∣∣
1
L
Q̂N (β)− 1

L
Q̂N (β0)−Q(β)

∣∣∣∣ ≤ sup
β∈Bδ/4

∣∣∣∣
1
L
Q̂N (β)− 1

L
QN (β)

∣∣∣∣+
∣∣∣∣
1
L
Q̂N (β0)−

1
L
QN (β0)

∣∣∣∣

+ sup
β∈Bδ/4

∣∣∣∣
1
L
QN (β) − 1

L
QN (β0) −

1
L
QN (β)

∣∣∣∣

+ sup
β∈Bδ/4

∣∣∣∣
1
L
QN (β) −Q(β)

∣∣∣∣

= oP (1)

using (B.5), (B.6), Lemma B8 and L � N . Combining this with Lemma B7 and recalling that

v0 ∈ BN ⊂ Bδ/4 with probability approaching one show that the usual consistency conditions of

M-estimators are satisfied (see e.g. White, 1994). Hence β̂N converges in probability to β0.

Step 3: Asymptotic Normality. Given A4-(i), we have sup(z,I)∈Z×I b0(z, I) + δ < v0 < vsup.

Thus, β0 is an inner point of BN with probability approaching one. Hence, because β̂N
P−→ β0,

β̂N solves with probability approaching one the first-order conditions

0 =
L∑

`=1

I∑̀

i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`; β̂N )

) ∂m̂(Z`, I`; β̂N )
∂β

Taking a Taylor expansion with integral remainder of m̂(Z`, I`; β̂N ) around β0, and solving give

β̂N − β0 =

[
L∑

`=1

I`ω(Z`, I`)
∂m̂(Z`, I`; β̂N )

∂β

∫ 1

0

∂m̂(Z`, I`;β0 + t(β̂N − β0))
∂β′

dt

]−1

×
L∑

`=1

I∑̀

i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`;β0)

) ∂m̂(Z`, I`; β̂N )
∂β

. (B.7)

Let ĴN be the term within brackets. Lemmas B1, B6, B8 and the consistency of β̂N yield

ĴN =
L∑

`=1

I`ω(Z`, I`)
∂m(Z`, I`; β̂N )

∂β

∫ 1

0

∂m(Z`, I`;β0 + t(β̂N − β0))
∂β′

dt+OP (NaN )

= AN (β0) + oP (N) = NA(β0) + oP (N), (B.8)

where A(β0) is nonsingular by Lemma B7. Next, we study the second term in (B.7), i.e.

ŜN =
L∑

`=1

I∑̀

i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`; β̂N )

∂β
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+
L∑

`=1

I∑̀

i=1

ω(Z`, I`)

(
m(Z`, I`;β0)

∂m(Z`, I`; β̂N )
∂β

− m̂(Z`, I`;β0)
∂m̂(Z`, I`; β̂N )

∂β

)

+
L∑

`=1

I∑̀

i=1

ω(Z`, I`)

[(
Ŷi` − Yi`

) ∂m̂(Z`, I`; β̂N )
∂β

+ Yi`

(
∂m̂(Z`, I`; β̂N )

∂β
− ∂m(Z`, I`; β̂N )

∂β

)]
.

From (10) we have
∑

`

∑
i |Yi`| = OP (N/

√
hN ) by Lemmas B1 and B3, using Markov inequality

and E|εi`| ≤ [E(ε2i`)]
1/2 to get

∑
`

∑
i |εi`| = OP (N/

√
hN ), which is the leading term given

A4-(iv). Therefore, using Lemmas B1, B5 and B6 together with A4-(ii), we obtain

ŜN =
L∑

`=1

I∑̀

i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`; β̂N )

∂β

+NOP (aN ) +OP


max


N aN

hN
,

(
NaN

h2
N

)1/2



+OP

(
NaN√
hN

)

=
L∑

`=1

I∑̀

i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`;β0)

∂β

+
L∑

`=1

I∑̀

i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))

(
∂m(Z`, I`; β̂N )

∂β
− ∂m(Z`, I`;β0)

∂β

)

+ OP


max


N aN

hN
,

(
NaN

h2
N

)1/2



 .

Using (10), the consistency of β̂N , Lemmas B1, B3 and B9 with A2-(ii) implies that the second

term is an oP

(
NhR+1

N

)
+ oP

(√
N/hN

)
. Note that NaN/hN = o

(
NhR+1

N

)
and NaN/h

2
N =

o
(
N1/2h

−3/2
N

)
= o(N/hN ) under A4-(iv,v). Hence, (10) and Lemmas B3 and B8 imply

ŜN =
L∑

`=1

I∑̀

i=1

ω(Z`, I`) (ei` + εi`)
∂m(Z`, I`;β0)

∂β
+ oP

(
NhR+1

N +

√
N

hN

)

= NhR+1
N b(β0, g0) +

L∑

`=1

I∑̀

i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
+ oP

(
NhR+1

N +

√
N

hN

)
. (B.9)

Let ui` = ω(Z`, I`)∂m(Z`, I`;β0)/∂β. Using (17), Lemmas B1, B3-(iii), B8 and A4-(ii) gives

Var




L∑

`=1

I∑̀

i=1

ui`εi` |FL


 =

BN (β0)
hN

∫
Φ2(x)dx+ oP

(
N

hN

)
=

N

hN

(
B(β0)

∫
Φ2(x)dx+ op(1)

)
.

Because ‖u‖∞/(‖u‖2

√
hN ) = OP (1/

√
NhN ) = oP (1) by A4-(iv), Lemma B4 implies

√
hN

N

L∑

`=1

I∑̀

i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
d→ N

(
0, B(β0)

∫
Φ2(x)dx

)
. (B.10)
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Collecting (B.8)–(B.10) and using β̂N − β0 = Ĵ−1
N ŜN from (B.7) give

β̂N − β0 = hR+1
N A(β0)−1b(β0, g0)

+
1√
NhN

A(β0)−1

√
hN

N

L∑

`=1

I∑̀

i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
+ oP

(
hR+1

N +
1√
NhN

)
,

showing that β̂N − β0 = OP (hR+1
N + 1/

√
NhN ). This also gives the limits in probability and in

distribution of Theorem 3-(ii,iii). Moreover, N−1ÂN (β̂N ) = A(β0) + oP (1) and N−1B̂N (β̂N ) =

B(β0) + oP (1) can be established arguing as in (B.8).

Appendix C

Appendix C gathers proofs of Lemmas B1–B9 stated in Appendix B.

Proof of Lemma B1: By Lemma 2-(i), b0(·, I) has R + 1 continuous derivatives on Z. The

desired result then follows from (7), λ(·; ·) = U(·; ·)/U ′(·; ·), which is strictly positive and R+ 1

continuous differentiable on (0,∞)×Θ, and the definition of B. That sup(z,I)∈Z×I b0(z, I) < v0

follows from the compactness of Z, the finiteness of I, Lemma 2-(i) and Theorem 1-(i).

Proof of Lemma B2: The proof is in four steps. For j = 0, N , define

ξj(b; z, I) = b+ λ−1

(
1

I − 1
Gj(b|z, I)
gj(b|z, I)

; θj

)
, b ∈ [v0, b0(z, I)], (z, I) ∈ Z × I.

Step 1: GN (·|·, ·) satisfies the properties of Lemma 2. Let Ψ(b) =
∫ b
−∞ ψ(x)dx. We have

GN (b|z, I) = G0(b|z, I) + πN (z, I)κ−1ρ
− 1

R+1

N Ψ
(
κρ

1
R+1

N

(
b− b0(z, I)

))
.

In particular, GN (·|z, I) and gN (·|z, I) are equal to G0(·|z, I) and g0(·|z, I) on [b0, b0(z, I) −
ρ
−1/(R+1)
N ], while differing from the latter on [b0(z, I) − κ−1ρ

−1/(R+1)
N , b0(z, I)]. Now, G0(·|·, ·)

satisfies Lemma 2 under Assumption A2. Moreover, Ψ(·) is infinitely differentiable on IR−,

while πN (·, I) is R + 1 continuously differentiable on Z in view of Lemma B1. Therefore, for

N large enough, GN (·|·, ·) satisfies the properties of Lemma 2 with bN (z, I) = b0(z, I) = v0

and bN (z, I) = b0(z, I) for all (z, I) ∈ Z × I. In particular, as for G0(·|·, I)/g0(·|·, I), the ratio

GN (·|·, I)/gN (·|·, I) is R+ 1 continuously differentiable on SI(G0) for every I ∈ I.

Step 2: Properties of ξN (·|z, I) − ξ0(·|z, I) and its derivatives. Step 1 and Lemma 2 yield

∂rGN (b|z, I)
∂br

− ∂rG0(b|z, I)
∂br

= πN (z, I)κr−1ρ
r−1
R+1

N Ψ(r)
(
κρ

1
R+1

N

(
b−b0(z, I)

))
,

∂rgN (b|z, I)
∂br

− ∂rg0(b|z, I)
∂br

= πN (z, I)κrρ
r

R+1

N ψ(r)
(
κρ

1
R+1

N

(
b−b0(z, I)

))
,
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where b ∈ [v0, b0(z, I)] for 0 ≤ r ≤ R+1 with the exception that b ∈ (v0, b0(z, I)] when r = R+1

in the second equality. By Lemma 2-(i) there is a b∗ with v0 < b∗ < b0(z, I) for all (z, I). Because

supz,I |πN (z, I)| = O(1/ρN ) and |ψ(r)(·)| and |Ψ(r)(·)| are bounded, this gives

sup
(b,z,I)∈∪Z×I [b∗,b0(z,I)]×{z,I}

∣∣∣∣
∂rGN (b|z, I)

∂br
− ∂rG0(b|z, I)

∂br

∣∣∣∣ = κr−1O

(
ρ

r−1−(R+1)
R+1

N

)
, (C.1)

sup
(b,z,I)∈∪Z×I [b∗,b0(z,I)]×{z,I}

∣∣∣∣
∂rgN (b|z, I)

∂br
− ∂rg0(b|z, I)

∂br

∣∣∣∣ = κrO

(
ρ

r−(R+1)
R+1

N

)
, (C.2)

for r = 0, . . . , R+ 1, where the remainder terms are independent of κ.

Now, for L large enough, ∂rξN (b; z, I)/∂br =∂rξ0(b; z, I)/∂br for r ≥ 0 and (b, z, I) ∈ [v0, b∗]×
Z × I, while for r = 0, . . . , R + 1 and (b, z, I) ∈ [b∗, b0(z, I)] ×Z × I,

∣∣∣∣
∂rξN (b; z, I)

∂br
− ∂rξ0(b; z, I)

∂br

∣∣∣∣

≤
∣∣∣∣
∂r

∂br

[
λ−1

(
GN (b|z, I)

(I − 1)g1(b|z, I)
; θN

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θN

)]∣∣∣∣

+
∣∣∣∣
∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θN

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ0
)]∣∣∣∣

≤ sup
θ∈Θ

∣∣∣∣
∂r

∂br

[
λ−1

(
G1(b|z, I)

(I − 1)g1(b|z, I)
; θ
)]

− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ
)]∣∣∣∣

+
∣∣∣∣
∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θN

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ0
)]∣∣∣∣ . (C.3)

The difference in the sup term is a difference of polynomials in the variables 1/gj(b|z, I),
g
(k)
j (b|z, I), G(k)

j (b|z, I) and ∂kλ−1(·; θj)/∂xk evaluated at Gj(b|z, I)/[(I − 1)gj(b|z, I)], for k =

0, . . . , r. Therefore, for r = 0, . . . , R+1 the first term in (C.3) is of order κrO
(
ρ
(r−(R+1))/(R+1)
N

)

uniformly on ∪Z×I [b∗, b0(z, I)] × {z, I} by (C.1)-(C.2). Regarding the second term in (C.3),

note that λ−1(·; ·) is R + 1 continuously differentiable on [0,+∞) × Θ because λ(·; ·) is R + 1

continuously differentiable on [0,+∞)×Θ by Assumption A2-(i) and λ′(·; θ) ≥ 1. Thus, because

G0(·|·, I)/g0(·|·; I) is R+1 continuously differentiable on SI(G0), the function ∂rλ−1{G0(b|z, I)/
[(I − 1)g0(b|z, I)]; θ}/∂br is continuous on SI(G0) × Θ. Hence, the second term is of order

‖θN − θ0‖∞ = O(1/ρN ) = o(1) uniformly on SI(G0), for r = 0, . . . , R + 1, because ρN → ∞.

Collecting results and using the finiteness of I, (C.3) yields

sup
I∈I

sup
(b,z)∈SI(G0)

∣∣∣∣
∂rξN (b; z, I)

∂br
− ∂rξ0(b; z, I)

∂br

∣∣∣∣ = κrO

(
ρ

r−(R+1)
R+1

N

)
+ o(1) , r = 0, . . . , R+ 1. (C.4)

Step 3: Proof of (i). Because R ≥ 1, applying (C.4) for r = 1 yields that ξ′N (·; z, I) > 0 on

[v0, b0(z, I)] for every (z, I) ∈ Z × I. Because GN (·|z, I) satisfies Definition 3, Lemma 1 shows
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that GN (·|z, I) is rationalized by [U(·; θN ), FN (·|z, I)] for every (z, I) ∈ Z×I, where FN (·|z, I) is

the distribution of ξN (b; z, I) with b ∼ GN (·|z, I). It remains to verify that FN (·|·, ·) ∈ F∗
R. The

support of FN (·|z, I) is the same as F0(·|z, I), namely [v0, v0] since vN (z, I) = ξ1(v0; z, I) = v0,

while vN (z, I) = ξN (b0(z, I); z, I) together with ψ(0) = 1 give

vN (z, I) = b0(z, I) + λ−1

(
1

I − 1
1

g0(b0(z, I)|z, I) +m(z, I;βN ) −m(z, I;β0)
; θN

)

= b0(z, I) + λ−1
(

1
I − 1

1
m(z, I;βN )

; θN

)

= b0(z, I) + λ−1
(
λ
(
v̄0 − b0(z, I); θN

)
; θN

)
= v0,

because g0(b0(z, I)|z, I) = m(z, I;β0) by (6) and (7). Also, it can be seen that FN (·|·, I) is R+1

continuously differentiable on [v0, v0] × Z with a density satisfying Definition 4-(iii) in view of

the properties of ξN (·; ·, I) and GN (·|·, I) as FN (v|z, I) = GN (ξ−1
N (v; z, I)|z, I).

Step 4: Proof of (ii). Let sj(v; z, I) = ξ−1
j (v; z, I). Using the same argument as in Step

2 of the proof of Lemma B1 in Guerre, Perrigne, Vuong (2000), it follows that sN (v; z, I) −
s0(v; z, I) also satisfies (C.4) with ξj(b; z, I) replaced by sj(v; z, I), for j = 0, 1. Now, fN (v|z, I) =

gN (s1(v; z, I)|z, I)s′N (v; z, I). Thus, following Step 3 of that lemma we obtain

sup
I∈I

sup
(v,z)∈[v0,v0]×Z

∣∣∣∣
∂rfN (v|z, I)

∂vr
− ∂rf0(v|z, I)

∂vr

∣∣∣∣ = κr+1O

(
ρ

r−R
R+1

N

)
+ o(1), r = 0, 1, . . . , R.

Letting r = 0 we have ‖fN (·|·, ·) − f0(·|·, ·)‖∞ < ε for N sufficiently large. Moreover, for r = R

the triangular inequality gives ‖∂RfN (·|·, ·)/∂vR‖∞ < M as ‖∂Rf0(·|·, ·)/∂vR‖∞ < M , provided

κ is sufficiently small. Because ‖βN − β0‖∞ < ε for N large enough, the desired result follows.

Proof of Lemma B3: (i) The variables Yi` are independent given FL because the Vi`s (and

then the Bi`s) are independent given FL. The same property holds for εi` = Yi` − E[Yi`|FL].

(ii) The proof is standard. We have 0 < hN ≤ inf(z,I)∈Z×I(b0(z, I) − b0(z, I)) by A4-(iv), I
finite and Lemma 2-(i). Thus, by Lemma 2-(iv) a Taylor expansion of order R+ 1 gives

E[Yi`|FL]

=
1
hN

∫ b(Z`,I`)

b0(Z`,I`)
Φ

(
b− b0(Z`, I`)

hN

)
g0(b|Z`, I`)db =

∫ 0

−∞
Φ(x)g0(b0(Z`, I`) + hNx|Z`, I`)dx

=
∫

Φ(x)

[
R+1∑

r=0

g
(r)
0 (b0(Z`, I`)|Z`, I`)

(hNx)r

r!
+ o

(
(hNx)R+1

)]
dx

= g0(b0(Z`, I`)|Z`, I`) +
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
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using A4-(iii). Then (ii) follows because g0(b0(·, I)|·, I) = m(·, I;β0) by (8).

(iii) Similarly, using (ii), Lemma 2 and hN → 0, we have

Var[Yi`|FL] =
1
h2

N

∫ b0(Z`,I`)

−∞
Φ2

(
b− b0(Z`, I`)

hN

)
g0(b|Z`, I`)db− E2[Yi`|FL]

=
1
hN

∫ 0

−∞
Φ2(x)g0(b0(Z`, I`) + hNx|Z`, I`)dx+ o

(
1
hN

)

= g0(b0(Z`, I`)|Z`, I`)
1 + o(1)
hN

∫
Φ2(x)dx,

max
i,`

|εi`| =
1
hN

max
i,`

∣∣∣∣∣Φ
(
Bi` − b0(Z`, I`)

hN

)
− E

[
Φ

(
Bi` − b0(Z`, I`)

hN

)
|FL

]∣∣∣∣∣ ≤
2 supx∈IR |Φ(x)|

hN
.

Proof of Lemma B4: It suffices to check the Lyapounov condition of Theorem 7.3 in Billingsley

(1968) given FL. From Lemma B3-(iii), we have

|ui`εi`| ≤
2‖u‖∞ supx∈IR |Φ(x)|

hN
, Var1/2




L∑

`=1

I∑̀

i=1

ui`εi`|FL


 � ‖u‖2/

√
hN .

Thus, E[|ui`εi`|3|FL] ≤ E[|ui`εi`|2|FL]O(‖u‖∞/hN ). Hence, by independence of the εi`s given

FL and E[εi`|FL] = 0, we obtain

1

Var3/2[
∑L

`=1

∑I`
i=1 ui`εi`|FL]

L∑

`=1

I∑̀

i=1

E[|ui`εi`|3|FL] ≤ O(‖u‖∞/hN )

Var1/2[
∑L

`=1

∑I`
i=1 ui`εi`|FL]

,

which is an O
(
‖u‖∞/[

√
hN‖u‖2]

)
, and hence an oP (1) by the assumptions of the lemma.

Proof of Lemma B5: In view of A4-(v), let aN � aN be such that the event EN =

{max` |b̂(Z`, I`) − b0(Z`, I`)| ≤ aN} has a probability larger than 1 − ε, where ε > 0 can be

chosen arbitrary small. By A4-(iii), Φ(·) is continuously differentiable on IR−, with support

[−1, 0]. In particular, Yi` = Ŷi` = 0 if Bi` ≤ b0(Z`, I`) − an − hn. Note also that aN < hN for N

sufficiently large by A2-(v). In order to bound Ŷi` − Yi` on EN , we use a first-order Taylor ex-

pansion of Φ(·) when b0(Z`, I`)−an−hn ≤ Bi` ≤ b0(Z`, I`)−2an, while we use the boundedness

of Φ(·) when b0(Z`, I`) − 2an ≤ Bi` ≤ b0(Z`, I`). This gives

|Ŷi` − Yi`|1I(EN ) =
1I(EN )
hN

∣∣∣∣∣∣
Φ


Bi` − b̂(Z`, I`)

hN


− Φ

(
Bi` − b0(Z`, I`)

hN

)∣∣∣∣∣∣

≤ aN supx |Φ′(x)|
h2

N

1I[−āN−hN ,−2aN ]

(
Bi` − b0(Z`, I`)

)
+

2 supx |Φ(x)|
hN

1I[−2aN ,0]

(
Bi` − b0(Z`, I`)

)
.
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Let ζi` denote the right-hand side. Because aN � aN = o(hN ) by A4-(v), and maxI∈I sup(b,z)∈SI (G0)

g0(b|z, I) <∞, it is easily seen that

E[ζi`|FL] = O

(
aN

hN

)
= O

(
aN

hN

)
, Var[ζi`|FL] ≤ E[ζ2

i`|FL] = O

(
a2

N

h3
N

)
+O

(
aN

h2
N

)
= O

(
aN

h2
N

)
.

By independence of the ζi`s given FL, this gives

E







L∑

`=1

I∑̀

i=1

|ui`|ζi`




2

| FL


 = E2




L∑

`=1

I∑̀

i=1

|ui`|ζi` | FL


+

L∑

`=1

I∑̀

i=1

u2
i`Var[ζi` | FL]

= O

[(
‖u‖1

aN

hN

)2

+ ‖u‖2
2

aN

h2
N

]
,

E




L∑

`=1

I∑̀

i=1

|ui`|ζ2
i` | FL


 = ‖u‖1O

(
aN

h2
N

)
.

Using E[|X|] ≤ E1/2[X2], Markov inequality given FL and Pr(EN ) ≥ 1− ε completes the proof.

Proof of Lemma B6: By definition of Bδ, we have δ ≤ v − b0(Z`, I`) ≤ vsup for all `. By

A4-(v), we have |b̂(Z`, I`) − b0(Z`, I`)| < δ/2 for all ` with probability approaching one. Thus,

δ/2 ≤ v − b̂(Z`, I`) ≤ vsup + δ/2 for all ` with probability approaching one. Now,

m̂(Z`, I`;β) −m(Z`, I`;β) =
1

I` − 1




1

λ
(
v − b̂(Z`, I`); θ

) − 1

λ
(
v − b0(Z`, I`); θ

)


 .

Hence, the denominators are uniformly bounded away from 0 with probability approaching one.

The desired result follows from A2-(i) since λ(x; θ) is uniformly continuous on the compact

[δ/2, vsup + δ/2] × Θ. The study of the derivatives is similar.

Proof of Lemma B7: By A3-(i) and A4-(ii), there exists some C > 0 such that Q(β) ≥
C
∑

I∈I
∫
Z [m(z, I;β) −m(z, I;β0)]

2 dz. Thus, Q(β) = 0 is equivalent to m(z, I;β) = m(z, I;β0)

for all (z, I) ∈ Z ×I by continuity of m(·, I;β) −m(·, I;β0) whenever β ∈ Bδ in view of Lemma

B1 and Bδ ⊂ B. Using (7), this is equivalent to λ[v − b0(z, I); θ] = λ[v0 − b0(z, I); θ0] for all

(z, I) ∈ Z ×I. Hence, β = β0 by A2-(iii). Therefore, Q(β) = 0 if and only if β = β0. Moreover,

Lemma B1 yields that Q(·) is continuous on Bδ and hence on Bδ∩{‖β−β0‖ ≥ ε} by the Lebesgue

Dominated Convergence Theorem. This implies the first claim as Bδ is compact.

Next, consider A(β) as B(β) is treated similarly. The Lebesgue Dominated Convergence

Theorem and Lemma B1 yield that detA(β) is continuous in β ∈ Bδ. Thus, it is sufficient to show

that A(β0) is of full rank. Suppose not, then there exists t ∈ IRp+1\{0} with t′A(β0)t = 0. From
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(7) we have ∂m(z, I;β)/∂β = −(I − 1)m2(z, I;β)∂λ[v− b0(z, I); θ]/∂β, with m(z, I;β) ≥ m > 0

for all β ∈ Bδ, z ∈ Z, I ∈ I because m(·, I; ·) does not vanish and is continuous on Z × Bδ by

Lemma B1. Thus, arguing as for Q(·) and letting β = β0 give

0 = t′A(β0)t ≥ C
∑

I∈I

∫

Z


t′ ·

∂λ
(
v0 − b0(z, I); θ0

)

∂β




2

dz,

which implies t′ · ∂λ[v0 − b0(z, I); θ0]/∂β = 0 for all (z, I) ∈ Z ×I, thereby contradicting A4-(i).

Proof of Lemma B8: Observe that the function I`ω(Z`, I`) [m(Z`, I`;β) −m(Z`, I`;β0)]
2 is

a Lipschitz function with respect to β ∈ Bδ with a Lipschitz constant that can be chosen

independently of (β, β0, Z`, I`) by Lemma B1 and the compactness of Bδ × Z × I. The first

statement of the lemma with the order OP (1/
√
L) follows from the maximal inequality (19.36) in

van der Vaart (1998) upon computing the bracketing number of the class of functions {[m(·, ·;β)−
m(·, ·;β0)]2;β ∈ Bδ} on Z×I. See Example 19.7 in van der Vaart (1998). The other statements

of the lemma are direct consequences of the Lindeberg-Levy Central Limit Theorem since L � N

and N/L = E[I] + oP (1), writing for instance

AN (β)
N

=
(
N

L

)−1 1
L

L∑

`=1

I`ω(Z`, I`)
∂m(Z`, I`;β)

∂β
· ∂m(Z`, I`;β)

∂β′
.

Proof of Lemma B9: Define w`L(β) =
√
hN

∑I`
i=1 ω(Z`, I`;β)m(Z`, I`;β)εi` so that WN (β) =

(L/N)1/2L−1/2∑L
`=1w`L(β) with w`L i.i.d. within rows. Because L/N is bounded, it suffices to

show that supβ∈Bδ

∣∣∣L−1/2∑L
`=1w`L(β)

∣∣∣ = OP (1). Using A4-(ii), Lemmas B1, B3-(iii) and the

compactness of Z×I×Bδ, there exists some constant C > 0 such that max1≤`≤L supβ∈Bδ
|w`L(β)|

≤ C/
√
hN , max1≤`≤L supβ∈Bδ

Var[w`L(β)] ≤ C, and max1≤`≤L E1/2[w`L(β)−w`L(β′)]2 ≤ C‖β−
β′‖ for all L. This is sufficient to apply the maximal inequality of Lemma 19.36 in van der Vaart

(1998) with bracketing number as in Example 19.7. This gives

E

[
sup
β∈Bδ

∣∣∣∣∣L
−1/2

L∑

`=1

w`L(β)

∣∣∣∣∣

]
≤ C ′

(
1 +

C ′′
√
LhN

)
= O(1),

where C ′ and C ′′ are positive constants independent of L. Applying Markov inequality, this gives

supβ∈Bδ
|WN (β)| = OP (1). A similar proof establishes that supβ∈Bδ

|W (1)
N (β)| = OP (1). Because

β̃N ∈ Bδ with probability approaching one as β̃N
P−→ β0 ∈ Bδ, we obtain W

(1)
N (β̃N ) = oP (1).
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Härdle, W. and O. Linton (1994): “Applied Nonparametric Methods,” in R.F. Engle and

D.L. McFadden, eds., Handbook of Econometrics, Volume IV, Amsterdam: North Holland.

Hengartner, N.W. (1997): “Asymptotic Unbiased Density Estimators,” Working Paper, Yale

University.
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Table 1: Summary Statistics
Variable Mean STD

Bids ($) 202,564 494,178

Winning Bids ($) 211,639 520,178

Appraisal Value ($ per mbf) 57.07 45.41

Volume (mbf) 1,625 3,153

Number of Bidders 3.72 1.81

Table 2: Estimation Results
Constant Linear Quadratic

CRRA θ̂ =0.0199 θ̂ =0.6813 θ̂ =0.6797

(0.0015) (0.0317) (0.0104)

γ̂0 =78.6576 γ̂0 =10.6115 γ̂0 =10.4648

(0.0267) (0.8498) (0.6340)

γ̂1 =5.2266 γ̂1 =5.2750

(0.1157) (0.1983)

γ̂2 =-0.0031

(0.0115)

SSE=2.1950 SSE= 1.6138 SSE= 1.6107

CRRA with wealth θ̂ =0.1565 θ̂ =0.7331 θ̂ =0.7305

(0.1081) (0.1098) (0.0998)

γ̂0 =82.5494 γ̂0 =10.8534 γ̂0 =10.7060

(0.2772) (3.0051) (2.3924)

γ̂1 =5.2164 γ̂1 =5.2650

(0.0472) (0.1642)

γ̂2 =-0.0031

(0.0097)

ŵ = 10−10 ŵ = 10−10 ŵ = 10−10

(1.8 × 10−8) (0.0075) (0.0060)

SSE= 2.1504 SSE= 1.5487 SSE=1.5431

CARA No Convergence θ̂ =0.0001 θ̂ =0.00002

(0.0024) (0.0034)

γ̂0 =9.8972 γ̂0 =11.9472

(0.7086) (1.4472)

γ̂1 =7.4882 γ̂1 =2.2882

(0.2110) (2.2140)

γ̂2 =1.1219

(0.4602)

SSE=1.3616 SSE=1.3431


